Functions
subroutine cgbmv (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CGBMV
subroutine cgemv (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CGEMV
subroutine cgerc (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERC
subroutine cgeru (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERU
subroutine chbmv (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CHBMV
subroutine chemv (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CHEMV
subroutine cher (UPLO, N, ALPHA, X, INCX, A, LDA)
CHER
subroutine cher2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CHER2
subroutine chpmv (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
CHPMV
subroutine chpr (UPLO, N, ALPHA, X, INCX, AP)
CHPR
subroutine chpr2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
CHPR2
subroutine ctbmv (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
CTBMV
subroutine ctbsv (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
CTBSV
subroutine ctpmv (UPLO, TRANS, DIAG, N, AP, X, INCX)
CTPMV
subroutine ctpsv (UPLO, TRANS, DIAG, N, AP, X, INCX)
CTPSV
subroutine ctrmv (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
CTRMV
subroutine ctrsv (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
CTRSV
Detailed Description
This is the group of complex LEVEL 2 BLAS routines.
Function Documentation
subroutine cgbmv (character TRANS, integer M, integer N, integer KL, integer KU, complex ALPHA, complex, dimension(lda,*) A, integer LDA, complex, dimension(*) X, integer INCX, complex BETA, complex, dimension(*) Y, integer INCY)
CGBMV
Purpose:

CGBMV performs one of the matrixvector operations y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or y := alpha*A**H*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl subdiagonals and ku superdiagonals.
Parameters:

TRANS
TRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
MM is INTEGER On entry, M specifies the number of rows of the matrix A. M must be at least zero.
NN is INTEGER On entry, N specifies the number of columns of the matrix A. N must be at least zero.
KLKL is INTEGER On entry, KL specifies the number of subdiagonals of the matrix A. KL must satisfy 0 .le. KL.
KUKU is INTEGER On entry, KU specifies the number of superdiagonals of the matrix A. KU must satisfy 0 .le. KU.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry, the leading ( kl + ku + 1 ) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( ku + 1 ) of the array, the first superdiagonal starting at position 2 in row ku, the first subdiagonal starting at position 1 in row ( ku + 2 ), and so on. Elements in the array A that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced. The following program segment will transfer a band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N K = KU + 1  J DO 10, I = MAX( 1, J  KU ), MIN( M, J + KL ) A( K + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( kl + ku + 1 ).
XX is COMPLEX array of DIMENSION at least ( 1 + ( n  1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m  1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
BETABETA is COMPLEX On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input.
YY is COMPLEX array of DIMENSION at least ( 1 + ( m  1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n  1 )*abs( INCY ) ) otherwise. Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2015
Further Details:

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine cgemv (character TRANS, integer M, integer N, complex ALPHA, complex, dimension(lda,*) A, integer LDA, complex, dimension(*) X, integer INCX, complex BETA, complex, dimension(*) Y, integer INCY)
CGEMV
Purpose:

CGEMV performs one of the matrixvector operations y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or y := alpha*A**H*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.
Parameters:

TRANS
TRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
MM is INTEGER On entry, M specifies the number of rows of the matrix A. M must be at least zero.
NN is INTEGER On entry, N specifies the number of columns of the matrix A. N must be at least zero.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ).
XX is COMPLEX array of DIMENSION at least ( 1 + ( n  1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m  1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
BETABETA is COMPLEX On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input.
YY is COMPLEX array of DIMENSION at least ( 1 + ( m  1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n  1 )*abs( INCY ) ) otherwise. Before entry with BETA nonzero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2015
Further Details:

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine cgerc (integer M, integer N, complex ALPHA, complex, dimension(*) X, integer INCX, complex, dimension(*) Y, integer INCY, complex, dimension(lda,*) A, integer LDA)
CGERC
Purpose:

CGERC performs the rank 1 operation A := alpha*x*y**H + A, where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix.
Parameters:

M
M is INTEGER On entry, M specifies the number of rows of the matrix A. M must be at least zero.
NN is INTEGER On entry, N specifies the number of columns of the matrix A. N must be at least zero.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
XX is COMPLEX array of dimension at least ( 1 + ( m  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
YY is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ).
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine cgeru (integer M, integer N, complex ALPHA, complex, dimension(*) X, integer INCX, complex, dimension(*) Y, integer INCY, complex, dimension(lda,*) A, integer LDA)
CGERU
Purpose:

CGERU performs the rank 1 operation A := alpha*x*y**T + A, where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix.
Parameters:

M
M is INTEGER On entry, M specifies the number of rows of the matrix A. M must be at least zero.
NN is INTEGER On entry, N specifies the number of columns of the matrix A. N must be at least zero.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
XX is COMPLEX array of dimension at least ( 1 + ( m  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
YY is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ).
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine chbmv (character UPLO, integer N, integer K, complex ALPHA, complex, dimension(lda,*) A, integer LDA, complex, dimension(*) X, integer INCX, complex BETA, complex, dimension(*) Y, integer INCY)
CHBMV
Purpose:

CHBMV performs the matrixvector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian band matrix, with k superdiagonals.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
KK is INTEGER On entry, K specifies the number of superdiagonals of the matrix A. K must satisfy 0 .le. K.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the hermitian matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first superdiagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a hermitian band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1  J DO 10, I = MAX( 1, J  K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the hermitian matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a hermitian band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1  J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ).
XX is COMPLEX array of DIMENSION at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
BETABETA is COMPLEX On entry, BETA specifies the scalar beta.
YY is COMPLEX array of DIMENSION at least ( 1 + ( n  1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine chemv (character UPLO, integer N, complex ALPHA, complex, dimension(lda,*) A, integer LDA, complex, dimension(*) X, integer INCX, complex BETA, complex, dimension(*) Y, integer INCY)
CHEMV
Purpose:

CHEMV performs the matrixvector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian matrix.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ).
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
BETABETA is COMPLEX On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input.
YY is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine cher (character UPLO, integer N, real ALPHA, complex, dimension(*) X, integer INCX, complex, dimension(lda,*) A, integer LDA)
CHER
Purpose:

CHER performs the hermitian rank 1 operation A := alpha*x*x**H + A, where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
ALPHAALPHA is REAL On entry, ALPHA specifies the scalar alpha.
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ).
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine cher2 (character UPLO, integer N, complex ALPHA, complex, dimension(*) X, integer INCX, complex, dimension(*) Y, integer INCY, complex, dimension(lda,*) A, integer LDA)
CHER2
Purpose:

CHER2 performs the hermitian rank 2 operation A := alpha*x*y**H + conjg( alpha )*y*x**H + A, where alpha is a scalar, x and y are n element vectors and A is an n by n hermitian matrix.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
YY is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ).
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine chpmv (character UPLO, integer N, complex ALPHA, complex, dimension(*) AP, complex, dimension(*) X, integer INCX, complex BETA, complex, dimension(*) Y, integer INCY)
CHPMV
Purpose:

CHPMV performs the matrixvector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian matrix, supplied in packed form.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
APAP is COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
BETABETA is COMPLEX On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input.
YY is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine chpr (character UPLO, integer N, real ALPHA, complex, dimension(*) X, integer INCX, complex, dimension(*) AP)
CHPR
Purpose:

CHPR performs the hermitian rank 1 operation A := alpha*x*x**H + A, where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix, supplied in packed form.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
ALPHAALPHA is REAL On entry, ALPHA specifies the scalar alpha.
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
APAP is COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine chpr2 (character UPLO, integer N, complex ALPHA, complex, dimension(*) X, integer INCX, complex, dimension(*) Y, integer INCY, complex, dimension(*) AP)
CHPR2
Purpose:

CHPR2 performs the hermitian rank 2 operation A := alpha*x*y**H + conjg( alpha )*y*x**H + A, where alpha is a scalar, x and y are n element vectors and A is an n by n hermitian matrix, supplied in packed form.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
ALPHAALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
YY is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y.
INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
APAP is COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine ctbmv (character UPLO, character TRANS, character DIAG, integer N, integer K, complex, dimension(lda,*) A, integer LDA, complex, dimension(*) X, integer INCX)
CTBMV
Purpose:

CTBMV performs one of the matrixvector operations x := A*x, or x := A**T*x, or x := A**H*x, where x is an n element vector and A is an n by n unit, or nonunit, upper or lower triangular band matrix, with ( k + 1 ) diagonals.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANSTRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A**T*x. TRANS = 'C' or 'c' x := A**H*x.
DIAGDIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
KK is INTEGER On entry with UPLO = 'U' or 'u', K specifies the number of superdiagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of subdiagonals of the matrix A. K must satisfy 0 .le. K.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first superdiagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1  J DO 10, I = MAX( 1, J  K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1  J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ).
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the transformed vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine ctbsv (character UPLO, character TRANS, character DIAG, integer N, integer K, complex, dimension(lda,*) A, integer LDA, complex, dimension(*) X, integer INCX)
CTBSV
Purpose:

CTBSV solves one of the systems of equations A*x = b, or A**T*x = b, or A**H*x = b, where b and x are n element vectors and A is an n by n unit, or nonunit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. No test for singularity or nearsingularity is included in this routine. Such tests must be performed before calling this routine.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANSTRANS is CHARACTER*1 On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A**T*x = b. TRANS = 'C' or 'c' A**H*x = b.
DIAGDIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
KK is INTEGER On entry with UPLO = 'U' or 'u', K specifies the number of superdiagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of subdiagonals of the matrix A. K must satisfy 0 .le. K.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first superdiagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1  J DO 10, I = MAX( 1, J  K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1  J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ).
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element righthand side vector b. On exit, X is overwritten with the solution vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine ctpmv (character UPLO, character TRANS, character DIAG, integer N, complex, dimension(*) AP, complex, dimension(*) X, integer INCX)
CTPMV
Purpose:

CTPMV performs one of the matrixvector operations x := A*x, or x := A**T*x, or x := A**H*x, where x is an n element vector and A is an n by n unit, or nonunit, upper or lower triangular matrix, supplied in packed form.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANSTRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A**T*x. TRANS = 'C' or 'c' x := A**H*x.
DIAGDIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
APAP is COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity.
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the transformed vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine ctpsv (character UPLO, character TRANS, character DIAG, integer N, complex, dimension(*) AP, complex, dimension(*) X, integer INCX)
CTPSV
Purpose:

CTPSV solves one of the systems of equations A*x = b, or A**T*x = b, or A**H*x = b, where b and x are n element vectors and A is an n by n unit, or nonunit, upper or lower triangular matrix, supplied in packed form. No test for singularity or nearsingularity is included in this routine. Such tests must be performed before calling this routine.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANSTRANS is CHARACTER*1 On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A**T*x = b. TRANS = 'C' or 'c' A**H*x = b.
DIAGDIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
APAP is COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity.
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element righthand side vector b. On exit, X is overwritten with the solution vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine ctrmv (character UPLO, character TRANS, character DIAG, integer N, complex, dimension(lda,*) A, integer LDA, complex, dimension(*) X, integer INCX)
CTRMV
Purpose:

CTRMV performs one of the matrixvector operations x := A*x, or x := A**T*x, or x := A**H*x, where x is an n element vector and A is an n by n unit, or nonunit, upper or lower triangular matrix.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANSTRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A**T*x. TRANS = 'C' or 'c' x := A**H*x.
DIAGDIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ).
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the transformed vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
subroutine ctrsv (character UPLO, character TRANS, character DIAG, integer N, complex, dimension(lda,*) A, integer LDA, complex, dimension(*) X, integer INCX)
CTRSV
Purpose:

CTRSV solves one of the systems of equations A*x = b, or A**T*x = b, or A**H*x = b, where b and x are n element vectors and A is an n by n unit, or nonunit, upper or lower triangular matrix. No test for singularity or nearsingularity is included in this routine. Such tests must be performed before calling this routine.
Parameters:

UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANSTRANS is CHARACTER*1 On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A**T*x = b. TRANS = 'C' or 'c' A**H*x = b.
DIAGDIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.
NN is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
AA is COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity.
LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ).
XX is COMPLEX array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element righthand side vector b. On exit, X is overwritten with the solution vector x.
INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
Author
Generated automatically by Doxygen for LAPACK from the source code.