DPBTRS(3)
solves a system of linear equations A*X = B with a symmetric positive definite band matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF
SYNOPSIS
 SUBROUTINE DPBTRS(

UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )

CHARACTER
UPLO

INTEGER
INFO, KD, LDAB, LDB, N, NRHS

DOUBLE
PRECISION AB( LDAB, * ), B( LDB, * )
PURPOSE
DPBTRS solves a system of linear equations A*X = B with a symmetric
positive definite band matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by DPBTRF.
ARGUMENTS
 UPLO (input) CHARACTER*1

= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.
 N (input) INTEGER

The order of the matrix A. N >= 0.
 KD (input) INTEGER

The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
 NRHS (input) INTEGER

The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
 AB (input) DOUBLE PRECISION array, dimension (LDAB,N)

The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The jth column of U or L is
stored in the jth column of the array AB as follows:
if UPLO ='U', AB(kd+1+ij,j) = U(i,j) for max(1,jkd)<=i<=j;
if UPLO ='L', AB(1+ij,j) = L(i,j) for j<=i<=min(n,j+kd).
 LDAB (input) INTEGER

The leading dimension of the array AB. LDAB >= KD+1.
 B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)

On entry, the right hand side matrix B.
On exit, the solution matrix X.
 LDB (input) INTEGER

The leading dimension of the array B. LDB >= max(1,N).
 INFO (output) INTEGER

= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value