

 PDF::API2::Basic::TTF::Font(3)
 Memory representation of a font

SYNOPSIS

Here is the regression test (you provide your own font). Run it once and then
again on the output of the first run. There should be no differences between
the outputs of the two runs.

 $f = PDF::API2::Basic::TTF::Font->open($ARGV[0]);
 # force a read of all the tables
 $f->tables_do(sub { $_[0]->read; });
 # force read of all glyphs (use read_dat to use lots of memory!)
 # $f->{'loca'}->glyphs_do(sub { $_[0]->read; });
 $f->{'loca'}->glyphs_do(sub { $_[0]->read_dat; });
 # NB. no need to $g->update since $f->{'glyf'}->out will do it for us
 $f->out($ARGV[1]);
 $f->release; # clear up memory forcefully!

DESCRIPTION

A Truetype font consists of a header containing a directory of tables which
constitute the rest of the file. This class holds that header and directory and
also creates objects of the appropriate type for each table within the font.
Note that it does not read each table into memory, but creates a short reference
which can be read using the form:

 $f->{$tablename}->read;

Classes are included that support many of the different TrueType tables. For
those for which no special code exists, the table type "table" is used, which
defaults to PDF::API2::Basic::TTF::Table. The current tables which are supported are:

 table PDF::API2::Basic::TTF::Table - for unknown tables
 GDEF PDF::API2::Basic::TTF::GDEF
 GPOS PDF::API2::Basic::TTF::GPOS
 GSUB PDF::API2::Basic::TTF::GSUB
 LTSH PDF::API2::Basic::TTF::LTSH
 OS/2 PDF::API2::Basic::TTF::OS_2
 PCLT PDF::API2::Basic::TTF::PCLT
 bsln PDF::API2::Basic::TTF::Bsln
 cmap PDF::API2::Basic::TTF::Cmap - see also PDF::API2::Basic::TTF::OldCmap
 cvt PDF::API2::Basic::TTF::Cvt_
 fdsc PDF::API2::Basic::TTF::Fdsc
 feat PDF::API2::Basic::TTF::Feat
 fmtx PDF::API2::Basic::TTF::Fmtx
 fpgm PDF::API2::Basic::TTF::Fpgm
 glyf PDF::API2::Basic::TTF::Glyf - see also PDF::API2::Basic::TTF::Glyph
 hdmx PDF::API2::Basic::TTF::Hdmx
 head PDF::API2::Basic::TTF::Head
 hhea PDF::API2::Basic::TTF::Hhea
 hmtx PDF::API2::Basic::TTF::Hmtx
 kern PDF::API2::Basic::TTF::Kern - see alternative PDF::API2::Basic::TTF::AATKern
 loca PDF::API2::Basic::TTF::Loca
 maxp PDF::API2::Basic::TTF::Maxp
 mort PDF::API2::Basic::TTF::Mort - see also PDF::API2::Basic::TTF::OldMort
 name PDF::API2::Basic::TTF::Name
 post PDF::API2::Basic::TTF::Post
 prep PDF::API2::Basic::TTF::Prep
 prop PDF::API2::Basic::TTF::Prop
 vhea PDF::API2::Basic::TTF::Vhea
 vmtx PDF::API2::Basic::TTF::Vmtx

Links are:

PDF::API2::Basic::TTF::Table PDF::API2::Basic::TTF::GDEF PDF::API2::Basic::TTF::GPOS PDF::API2::Basic::TTF::GSUB PDF::API2::Basic::TTF::LTSH
PDF::API2::Basic::TTF::OS_2 PDF::API2::Basic::TTF::PCLT PDF::API2::Basic::TTF::Bsln PDF::API2::Basic::TTF::Cmap PDF::API2::Basic::TTF::Cvt_
PDF::API2::Basic::TTF::Fdsc PDF::API2::Basic::TTF::Feat PDF::API2::Basic::TTF::Fmtx PDF::API2::Basic::TTF::Fpgm PDF::API2::Basic::TTF::Glyf
PDF::API2::Basic::TTF::Hdmx PDF::API2::Basic::TTF::Head PDF::API2::Basic::TTF::Hhea PDF::API2::Basic::TTF::Hmtx PDF::API2::Basic::TTF::Kern
PDF::API2::Basic::TTF::Loca PDF::API2::Basic::TTF::Maxp PDF::API2::Basic::TTF::Mort PDF::API2::Basic::TTF::Name PDF::API2::Basic::TTF::Post
PDF::API2::Basic::TTF::Prep PDF::API2::Basic::TTF::Prop PDF::API2::Basic::TTF::Vhea PDF::API2::Basic::TTF::Vmtx PDF::API2::Basic::TTF::OldCmap
PDF::API2::Basic::TTF::Glyph PDF::API2::Basic::TTF::AATKern PDF::API2::Basic::TTF::OldMort

INSTANCE VARIABLES

Instance variables begin with a space (and have lengths greater than the 4
characters which make up table names).
	nocsum
	
This is used during output to disable the creation of the file checksum in the
head table. For example, during DSIG table creation, this flag will be set to
ensure that the file checksum is left at zero.

	fname (R)
	
Contains the filename of the font which this object was read from.

	INFILE (P)
	
The file handle which reflects the source file for this font.

	OFFSET (P)
	
Contains the offset from the beginning of the read file of this particular
font directory, thus providing support for TrueType Collections.

METHODS

PDF::API2::Basic::TTF::Font->AddTable($tablename, $class)

Adds the given class to be used when representing the given table name. It also
'requires' the class for you.

PDF::API2::Basic::TTF::Font->Init

For those people who like making fonts without reading them. This subroutine
will require all the table code for the various table types for you. Not
needed if using PDF::API2::Basic::TTF::Font::read before using a table.

PDF::API2::Basic::TTF::Font->new(%props)

Creates a new font object and initialises with the given properties. This is
primarily for use when a TTF is embedded somewhere. Notice that the properties
are automatically preceded by a space when inserted into the object. This is in
order that fields do not clash with tables.

PDF::API2::Basic::TTF::Font->open($fname)

Reads the header and directory for the given font file and creates appropriate
objects for each table in the font.

$f->read

Reads a Truetype font directory starting from the current location in the file.
This has been separated from the "open" function to allow support for embedded
TTFs for example in TTCs. Also reads the "head" and "maxp" tables immediately.

$f->out($fname [, @tablelist])

Writes a TTF file consisting of the tables in tablelist. The list is checked to
ensure that only tables that exist are output. (This means that you can't have
non table information stored in the font object with key length of exactly 4)

In many cases the user simply wants to output all the tables in alphabetical order.
This can be done by not including a @tablelist, in which case the subroutine will
output all the defined tables in the font in alphabetical order.

Returns $f on success and undef on failure, including warnings.

All output files must include the "head" table.

$f->out_xml($filename [, @tables])

Outputs the font in XML format

$f->XML_start($context, $tag, %attrs)

Handles start messages from the XML parser. Of particular interest to us are and
<table>.

$f->update

Sends update to all the tables in the font and then resets all the isDirty
flags on each table. The data structure in now consistent as a font (we hope).

$f->dirty

Dirties all the tables in the font

$f->tables_do(&func)

Calls &func for each table in the font. Calls the table in alphabetical sort
order as per the order in the directory:

 &func($table, $name);

$f->release

Releases ALL of the memory used by the TTF font and all of its component
objects. After calling this method, do NOT expect to have anything left in
the "PDF::API2::Basic::TTF::Font" object.

NOTE, that it is important that you call this method on any
"PDF::API2::Basic::TTF::Font" object when you wish to destruct it and free up its memory.
Internally, we track things in a structure that can result in circular
references, and without calling '"release()"' these will not properly get
cleaned up by Perl. Once you've called this method, though, don't expect to be
able to do anything else with the "PDF::API2::Basic::TTF::Font" object; it'll have no
internal state whatsoever.

Developer note: As part of the brute-force cleanup done here, this method
will throw a warning message whenever unexpected key values are found within
the "PDF::API2::Basic::TTF::Font" object. This is done to help ensure that any unexpected
and unfreed values are brought to your attention so that you can bug us to keep
the module updated properly; otherwise the potential for memory leaks due to
dangling circular references will exist.

BUGS

Bugs abound aplenty I am sure. There is a lot of code here and plenty of scope.
The parts of the code which haven't been implemented yet are:
	Post
	
Version 4 format types are not supported yet.

	Cmap
	
Format type 2 (MBCS) has not been implemented yet and therefore may cause
somewhat spurious results for this table type.

	Kern
	
Only type 0 & type 2 tables are supported (type 1 & type 3 yet to come).

	TTC
	
The current PDF::API2::Basic::TTF::Font::out method does not support the writing of TrueType
Collections.

In addition there are weaknesses or features of this module library

	
There is very little (or no) error reporting. This means that if you have
garbled data or garbled data structures, then you are liable to generate duff
fonts.

	
The exposing of the internal data structures everywhere means that doing
radical re-structuring is almost impossible. But it stop the code from becoming
ridiculously large.

Apart from these, I try to keep the code in a state of ``no known bugs'', which
given the amount of testing this code has had, is not a guarantee of high
quality, yet.

For more details see the appropriate class files.

AUTHOR

Martin Hosken

Copyright Martin Hosken 1998.

No warranty or expression of effectiveness, least of all regarding anyone's
safety, is implied in this software or documentation.

Licensing

The Perl TTF module is licensed under the Perl Artistic License.

 CONTENTS

 	SYNOPSIS
	DESCRIPTION
	BUGS
	AUTHOR

 LAST SEARCHED

 	wxButton (3)
	asn1_copy_node (3)
	killall (1)
	std::_Hashtable< _Key (3)
	xfreerdp (1)
	ne_strdup (3)
	ltt-disarmall (1)
	vrb_space_ptr (3)
	ajbrowser (1)
	flexbar (1)
	resetBdd (3)

