CHETRI(3)
computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF
SYNOPSIS
 SUBROUTINE CHETRI(

UPLO, N, A, LDA, IPIV, WORK, INFO )

CHARACTER
UPLO

INTEGER
INFO, LDA, N

INTEGER
IPIV( * )

COMPLEX
A( LDA, * ), WORK( * )
PURPOSE
CHETRI computes the inverse of a complex Hermitian indefinite matrix
A using the factorization A = U*D*U**H or A = L*D*L**H computed by
CHETRF.
ARGUMENTS
 UPLO (input) CHARACTER*1

Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**H;
= 'L': Lower triangular, form is A = L*D*L**H.
 N (input) INTEGER

The order of the matrix A. N >= 0.
 A (input/output) COMPLEX array, dimension (LDA,N)

On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by CHETRF.
On exit, if INFO = 0, the (Hermitian) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
 LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,N).
 IPIV (input) INTEGER array, dimension (N)

Details of the interchanges and the block structure of D
as determined by CHETRF.
 WORK (workspace) COMPLEX array, dimension (N)

 INFO (output) INTEGER

= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.