CLA_SYAMV(3) performs the matrix-vector operation y := alpha*abs(A)*abs(x) + beta*abs(y),

SYNOPSIS

SUBROUTINE CLA_SYAMV(
UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )

    
IMPLICIT NONE

    
REAL ALPHA, BETA

    
INTEGER INCX, INCY, LDA, N

    
INTEGER UPLO

    
COMPLEX A( LDA, * ), X( * )

    
REAL Y( * )

PURPOSE

CLA_SYAMV performs the matrix-vector operation where alpha and beta are scalars, x and y are vectors and A is an n by n symmetric matrix.
This function is primarily used in calculating error bounds. To protect against underflow during evaluation, components in the resulting vector are perturbed away from zero by (N+1) times the underflow threshold. To prevent unnecessarily large errors for block-structure embedded in general matrices,
"symbolically" zero components are not perturbed. A zero entry is considered "symbolic" if all multiplications involved in computing that entry have at least one zero multiplicand.

ARGUMENTS

UPLO - INTEGER
On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = BLAS_UPPER Only the upper triangular part of A is to be referenced. UPLO = BLAS_LOWER Only the lower triangular part of A is to be referenced. Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit.
ALPHA - REAL .
On entry, ALPHA specifies the scalar alpha. Unchanged on exit.
A - COMPLEX array of DIMENSION ( LDA, n ).
Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit.
X - COMPLEX array of DIMENSION at least
( 1 + ( n - 1 )*abs( INCX ) ) Before entry, the incremented array X must contain the vector x. Unchanged on exit.
INCX - INTEGER.
On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit.
BETA - REAL .
On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit.
Y - REAL array of DIMENSION at least
( 1 + ( n - 1 )*abs( INCY ) ) Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.
INCY - INTEGER.
On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit.

FURTHER DETAILS

Level 2 Blas routine.
-- Written on 22-October-1986.

   Jack Dongarra, Argonne National Lab.

   Jeremy Du Croz, Nag Central Office.

   Sven Hammarling, Nag Central Office.

   Richard Hanson, Sandia National Labs.
-- Modified for the absolute-value product, April 2006

   Jason Riedy, UC Berkeley