DPOSVXX(3) DPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices

SYNOPSIS

SUBROUTINE DPOSVXX(
FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )

    
IMPLICIT NONE

    
CHARACTER EQUED, FACT, UPLO

    
INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS, N_ERR_BNDS

    
DOUBLE PRECISION RCOND, RPVGRW

    
INTEGER IWORK( * )

    
DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), X( LDX, * ), WORK( * )

    
DOUBLE PRECISION S( * ), PARAMS( * ), BERR( * ), ERR_BNDS_NORM( NRHS, * ), ERR_BNDS_COMP( NRHS, * )

PURPOSE


   DPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T
   to compute the solution to a double precision system of linear equations
   A * X = B, where A is an N-by-N symmetric positive definite matrix
   and X and B are N-by-NRHS matrices.
   If requested, both normwise and maximum componentwise error bounds
   are returned. DPOSVXX will return a solution with a tiny
   guaranteed error (O(eps) where eps is the working machine
   precision) unless the matrix is very ill-conditioned, in which
   case a warning is returned. Relevant condition numbers also are
   calculated and returned.

   DPOSVXX accepts user-provided factorizations and equilibration
   factors; see the definitions of the FACT and EQUED options.
   Solving with refinement and using a factorization from a previous
   DPOSVXX call will also produce a solution with either O(eps)
   errors or warnings, but we cannot make that claim for general
   user-provided factorizations and equilibration factors if they
   differ from what DPOSVXX would itself produce.

DESCRIPTION


   The following steps are performed:

   1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   the system:

     diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B

   Whether or not the system will be equilibrated depends on the
   scaling of the matrix A, but if equilibration is used, A is
   overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

   2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   factor the matrix A (after equilibration if FACT = 'E') as
      A = U**T* U,  if UPLO = 'U', or

      A = L * L**T,  if UPLO = 'L',

   where U is an upper triangular matrix and L is a lower triangular
   matrix.

   3. If the leading i-by-i principal minor is not positive definite,
   then the routine returns with INFO = i. Otherwise, the factored
   form of A is used to estimate the condition number of the matrix
   A (see argument RCOND).  If the reciprocal of the condition number
   is less than machine precision, the routine still goes on to solve
   for X and compute error bounds as described below.

   4. The system of equations is solved for X using the factored form
   of A.

   5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
   the routine will use iterative refinement to try to get a small
   error and error bounds.  Refinement calculates the residual to at
   least twice the working precision.

   6. If equilibration was used, the matrix X is premultiplied by
   diag(S) so that it solves the original system before

   equilibration.

ARGUMENTS

Some optional parameters are bundled in the PARAMS array. These settings determine how refinement is performed, but often the defaults are acceptable. If the defaults are acceptable, users can pass NPARAMS = 0 which prevents the source code from accessing the PARAMS argument.
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored. = 'F': On entry, AF contains the factored form of A. If EQUED is not 'N', the matrix A has been equilibrated with scaling factors given by S. A and AF are not modified. = 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then copied to AF and factored.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A, except if FACT = 'F' and EQUED = 'Y', then A must contain the equilibrated matrix diag(S)*A*diag(S). If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. A is not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by diag(S)*A*diag(S).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry contains the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, in the same storage format as A. If EQUED .ne. 'N', then AF is the factored form of the equilibrated matrix diag(S)*A*diag(S). If FACT = 'N', then AF is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the original matrix A. If FACT = 'E', then AF is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the equilibrated matrix A (see the description of A for the form of the equilibrated matrix).
LDAF (input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done. = 'N': No equilibration (always true if FACT = 'N').
= 'Y': Both row and column equilibration, i.e., A has been replaced by diag(S) * A * diag(S). EQUED is an input argument if FACT = 'F'; otherwise, it is an output argument.
S (input or output) DOUBLE PRECISION array, dimension (N)
The row scale factors for A. If EQUED = 'Y', A is multiplied on the left and right by diag(S). S is an input argument if FACT = 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED = 'Y', each element of S must be positive. If S is output, each element of S is a power of the radix. If S is input, each element of S should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B. On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', B is overwritten by diag(S)*B;
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0, the N-by-NRHS solution matrix X to the original system of equations. Note that A and B are modified on exit if EQUED .ne. 'N', and the solution to the equilibrated system is inv(diag(S))*X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND (output) DOUBLE PRECISION
Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill- conditioned.
RPVGRW (output) DOUBLE PRECISION
Reciprocal pivot growth. On exit, this contains the reciprocal pivot growth factor norm(A)/norm(U). The "max absolute element" norm is used. If this is much less than 1, then the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with 0<INFO<=N, then this contains the reciprocal pivot growth factor for the leading INFO columns of A.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
Componentwise relative backward error. This is the componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). N_ERR_BNDS (input) INTEGER Number of error bounds to return for each right hand side and each type (normwise or componentwise). See ERR_BNDS_NORM and ERR_BNDS_COMP below.
ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i) - X(j,i))) ------------------------------ max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * dlamch('Epsilon'). err = 2 "Guaranteed" error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * dlamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * dlamch('Epsilon') to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. See Lapack Working Note 165 for further details and extra cautions.
ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i) - X(j,i)) max_j ---------------------- abs(X(j,i)) The array is indexed by the right-hand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * dlamch('Epsilon'). err = 2 "Guaranteed" error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * dlamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * dlamch('Epsilon') to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current right-hand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. See Lapack Working Note 165 for further details and extra cautions. NPARAMS (input) INTEGER Specifies the number of parameters set in PARAMS. If .LE. 0, the PARAMS array is never referenced and default values are used.
PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS
Specifies algorithm parameters. If an entry is .LT. 0.0, then that entry will be filled with default value used for that parameter. Only positions up to NPARAMS are accessed; defaults are used for higher-numbered parameters. PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative refinement or not. Default: 1.0D+0
= 0.0 : No refinement is performed, and no error bounds are computed. = 1.0 : Use the extra-precise refinement algorithm. (other values are reserved for future use) PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual computations allowed for refinement. Default: 10
Aggressive: Set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy. PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code will attempt to find a solution with small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence)
WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER

= 0: Successful exit. The solution to every right-hand side is guaranteed. < 0: If INFO = -i, the i-th argument had an illegal value
> 0 and <= N: U(INFO,INFO) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+J: The solution corresponding to the Jth right-hand side is not guaranteed. The solutions corresponding to other right- hand sides K with K > J may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested (PARAMS(3) = 0.0) then the Jth right-hand side is the first with a normwise error bound that is not guaranteed (the smallest J such that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) the Jth right-hand side is the first with either a normwise or componentwise error bound that is not guaranteed (the smallest J such that either ERR_BNDS_NORM(J,1) = 0.0 or ERR_BNDS_COMP(J,1) = 0.0). See the definition of ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information about all of the right-hand sides check ERR_BNDS_NORM or ERR_BNDS_COMP.