DTRTRS(3)
solves a triangular system of the form A * X = B or A**T * X = B,
SYNOPSIS
- SUBROUTINE DTRTRS(
-
UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB,
INFO )
-
CHARACTER
DIAG, TRANS, UPLO
-
INTEGER
INFO, LDA, LDB, N, NRHS
-
DOUBLE
PRECISION A( LDA, * ), B( LDB, * )
PURPOSE
DTRTRS solves a triangular system of the form
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
ARGUMENTS
- UPLO (input) CHARACTER*1
-
= 'U': A is upper triangular;
= 'L': A is lower triangular.
- TRANS (input) CHARACTER*1
-
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
- DIAG (input) CHARACTER*1
-
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
- N (input) INTEGER
-
The order of the matrix A. N >= 0.
- NRHS (input) INTEGER
-
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
-
The triangular matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.
- LDA (input) INTEGER
-
The leading dimension of the array A. LDA >= max(1,N).
- B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
-
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
- LDB (input) INTEGER
-
The leading dimension of the array B. LDB >= max(1,N).
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions
X have not been computed.