SYNOPSIS
gbnlprobit [options] <function definition>DESCRIPTION
Non linear probit estimation. Minimize the negative log-likelihood- sum_{i in N_0} log(1-F(g(X_i))) + sum_{i in N_1} log(F(g(X_i)))
where N_0 and N_1 are the sets of 0 and 1 observations, g is a generic function of the independent variables and F is the normal CDF. It is also possible to minimize the score function
w_0 sum_{i in N_0} theta(F(g(X_i))-t) +
- w_1 sum_{i in N_1} theta(t-F(g(X_i)))
where theta is the Heaviside function and t a threshold level. Weights w_0 and w_1 scale the contribution of the two subpopulations. The first column of data contains 0/1 entries. Successive columns are independent variables. The model is specified by a function g(x1,x2...) where x1,.. stands for the first,second .. N-th column independent variables.
options:
- -O
- type of output (default 0)
- 0
- parameters
- 1
- parameters and errors
- 2
- <variables> and probabilities
- 3
- parameters and variance matrix
- 4
- marginal effects
- -V
- variance matrix estimation (default 0)
- 0
- <gradF gradF^t>
- 1
- < J^{-1} >
- 2
- < H^{-1} >
- 3
- < H^{-1} J H^{-1} >
- -z
- take zscore (not of 0/1 dummies)
- -F
- input fields separators (default " \t")
- -v
- verbosity level (default 0)
- 0
- just results
- 1
- comment headers
- 2
- summary statistics
- 3
- covariance matrix
- 4
- minimization steps (default 10)
- 5
- model definition
- -g
- set number of point for global optimal threshold identification
- -h
- this help
- -t
- set threshold value (default 0)
- 0
- ignore threshold
- (0,1)
- user provided threshold
- 1
- compute optimal only global
- 2
- compute optimal
- -M
- estimation method
- 0
- maximum likelihood
- 1
- min. score (w0=w1=1)
- 2
- min. score (w0=1/N0, w1=1/N1)
- -A
- MLL optimization options (default 0.01,0.1,100,1e-6,1e-6,5) fields are step,tol,iter,eps,msize,algo. Empty fields for default
- step
- initial step size of the searching algorithm
- tol
- line search tolerance iter: maximum number of iterations
- eps
- gradient tolerance : stopping criteria ||gradient||<eps
- algo
- optimization methods: 0 Fletcher-Reeves, 1 Polak-Ribiere, 2 Broyden-Fletcher-Goldfarb-Shanno, 3 Steepest descent, 4 simplex
- -B
- score optimization options (default 0.1,100,1e-6) fields are step,iter,msize. Empty fields for default
- step
- initial step size of the searching algorithm
- iter
- maximum number of iterations
- msize
- max size, stopping criteria simplex dim. <max size optimization method is simplex
AUTHOR
Written by Giulio BottazziREPORTING BUGS
Report bugs to <[email protected]>
Package home page <http://cafim.sssup.it/~giulio/software/gbutils/index.html>
COPYRIGHT
Copyright © 2001-2015 Giulio Bottazzi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation;This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.