SYNOPSIS
#include <mpi.h>
int MPI_Reduce_scatter(void *sbuf, void *rbuf, int *rcounts,
MPI_Datatype dtype, MPI_Op op, MPI_Comm comm)
INPUT PARAMETERS
- sbuf
- - starting address of send buffer (choice)
- rcounts
- - integer array specifying the number of elements in result distributed to each process. Array must be identical on all calling processes.
- dtype
- - data type of elements of input buffer (handle)
- op
- - operation (handle)
- comm
-
- communicator (handle)
OUTPUT PARAMETER
- rbuf
-
- starting address of receive buffer (choice)
USAGE WITH IMPI EXTENSIONS
LAM/MPI does not yet support invoking this function on a communicator that contains ranks that are non-local IMPI procs.
NOTES FOR FORTRAN
All MPI routines in Fortran (except for MPI_WTIME and MPI_WTICK ) have an additional argument ierr at the end of the argument list. ierr is an integer and has the same meaning as the return value of the routine in C. In Fortran, MPI routines are subroutines, and are invoked with the call statement.
All MPI objects (e.g., MPI_Datatype , MPI_Comm ) are of type INTEGER in Fortran.
NOTES ON COLLECTIVE OPERATIONS
The reduction functions ( MPI_Op ) do not return an error value. As a result, if the functions detect an error, all they can do is either call MPI_Abort or silently skip the problem. Thus, if you change the error handler from MPI_ERRORS_ARE_FATAL to something else (e.g., MPI_ERRORS_RETURN ), then no error may be indicated.
The reason for this is the performance problems that arise in ensuring that all collective routines return the same error value.
ERRORS
If an error occurs in an MPI function, the current MPI error handler is called to handle it. By default, this error handler aborts the MPI job. The error handler may be changed with MPI_Errhandler_set ; the predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned (in C and Fortran; this error handler is less useful in with the C++ MPI bindings. The predefined error handler MPI::ERRORS_THROW_EXCEPTIONS should be used in C++ if the error value needs to be recovered). Note that MPI does not guarantee that an MPI program can continue past an error.
All MPI routines (except MPI_Wtime and MPI_Wtick ) return an error value; C routines as the value of the function and Fortran routines in the last argument. The C++ bindings for MPI do not return error values; instead, error values are communicated by throwing exceptions of type MPI::Exception (but not by default). Exceptions are only thrown if the error value is not MPI::SUCCESS .
Note that if the MPI::ERRORS_RETURN handler is set in C++, while MPI functions will return upon an error, there will be no way to recover what the actual error value was.
- MPI_SUCCESS
- - No error; MPI routine completed successfully.
- MPI_ERR_COMM
- - Invalid communicator. A common error is to use a null communicator in a call (not even allowed in MPI_Comm_rank ).
- MPI_ERR_OTHER
- - A collective implementation was not able to be located at run-time for this communicator.
- MPI_ERR_OTHER
- - A communicator that contains some non-local IMPI procs was used for some function which has not yet had the IMPI extensions implemented yet. For example, most collectives on IMPI communicators have not been implemented yet.
- MPI_ERR_COUNT
- - Invalid count argument. Count arguments must be non-negative; a count of zero is often valid.
- MPI_ERR_TYPE
- - Invalid datatype argument. May be an uncommitted MPI_Datatype (see MPI_Type_commit ).
- MPI_ERR_BUFFER
- - Invalid buffer pointer. Usually a null buffer where one is not valid.
- MPI_ERR_OP
- - Invalid operation. MPI operations (objects of type MPI_Op ) must either be one of the predefined operations (e.g., MPI_SUM ) or created with MPI_Op_create . Additionally, only certain datatypes are alloed with given predefined operations. See MPI-1, section 4.9.2.
- MPI_ERR_BUFFER
- - Invalid buffer pointer. Usually a null buffer where one is not valid.
- MPI_ERR_BUFFER
-
- This error class is associcated with an error code
that indicates that two buffer arguments are
aliased
; that is, the
describe overlapping storage (often the exact same storage). This
is prohibited in MPI (because it is prohibited by the Fortran
standard, and rather than have a separate case for C and Fortran,
the MPI Forum adopted the more restrictive requirements of Fortran).
MORE INFORMATION
For more information, please see the official MPI Forum web site, which contains the text of both the MPI-1 and MPI-2 standards. These documents contain detailed information about each MPI function (most of which is not duplicated in these man pages).
ACKNOWLEDGEMENTS
The LAM Team would like the thank the MPICH Team for the handy program to generate man pages ("doctext" from ftp://ftp.mcs.anl.gov/pub/sowing/sowing.tar.gz ), the initial formatting, and some initial text for most of the MPI-1 man pages.
LOCATION
reducescatter.c