SYNOPSIS
- SUBROUTINE PCTRCON(
- NORM, UPLO, DIAG, N, A, IA, JA, DESCA, RCOND, WORK, LWORK, RWORK, LRWORK, INFO )
- CHARACTER DIAG, NORM, UPLO
- INTEGER IA, JA, INFO, LRWORK, LWORK, N
- REAL RCOND
- INTEGER DESCA( * )
- REAL RWORK( * )
- COMPLEX A( * ), WORK( * )
PURPOSE
PCTRCON estimates the reciprocal of the condition number of a triangular distributed matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm.
The norm of A(IA:IA+N-1,JA:JA+N-1) is computed and an estimate is
obtained for norm(inv(A(IA:IA+N-1,JA:JA+N-1))), then the reciprocal
of the condition number is computed as
RCOND = 1 / ( norm( A(IA:IA+N-1,JA:JA+N-1) ) *
norm( inv(A(IA:IA+N-1,JA:JA+N-1)) ) ).
Notes
=====
Each global data object is described by an associated description
vector. This vector stores the information required to establish
the mapping between an object element and its corresponding process
and memory location.
Let A be a generic term for any 2D block cyclicly distributed array.
Such a global array has an associated description vector DESCA.
In the following comments, the character _ should be read as
"of the global array".
NOTATION STORED IN EXPLANATION
--------------- -------------- --------------------------------------
DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu-
ted over. The context itself is glo-
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed.
CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).
Let K be the number of rows or columns of a distributed matrix,
and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process
would receive if K were distributed over the p processes of its
process column.
Similarly, LOCc( K ) denotes the number of elements of K that a
process would receive if K were distributed over the q processes of
its process row.
The values of LOCr() and LOCc() may be determined via a call to the
ScaLAPACK tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
An upper bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
ARGUMENTS
- NORM (global input) CHARACTER
-
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm. - UPLO (global input) CHARACTER
-
= 'U': A(IA:IA+N-1,JA:JA+N-1) is upper triangular;
= 'L': A(IA:IA+N-1,JA:JA+N-1) is lower triangular. - DIAG (global input) CHARACTER
-
= 'N': A(IA:IA+N-1,JA:JA+N-1) is non-unit triangular;
= 'U': A(IA:IA+N-1,JA:JA+N-1) is unit triangular. - N (global input) INTEGER
-
The order of the distributed matrix A(IA:IA+N-1,JA:JA+N-1). N >= 0. - A (local input) COMPLEX pointer into the local memory
- to an array of dimension ( LLD_A, LOCc(JA+N-1) ). This array contains the local pieces of the triangular distributed matrix A(IA:IA+N-1,JA:JA+N-1). If UPLO = 'U', the leading N-by-N upper triangular part of this distributed matrix con- tains the upper triangular matrix, and its strictly lower triangular part is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of this ditributed matrix contains the lower triangular matrix, and the strictly upper triangular part is not referenced. If DIAG = 'U', the diagonal elements of A(IA:IA+N-1,JA:JA+N-1) are also not referenced and are assumed to be 1.
- IA (global input) INTEGER
- The row index in the global array A indicating the first row of sub( A ).
- JA (global input) INTEGER
- The column index in the global array A indicating the first column of sub( A ).
- DESCA (global and local input) INTEGER array of dimension DLEN_.
- The array descriptor for the distributed matrix A.
- RCOND (global output) REAL
-
The reciprocal of the condition number of the distributed
matrix A(IA:IA+N-1,JA:JA+N-1), computed as
RCOND = 1 / ( norm( A(IA:IA+N-1,JA:JA+N-1) ) *
norm( inv(A(IA:IA+N-1,JA:JA+N-1)) ) ). - WORK (local workspace/local output) COMPLEX array,
- dimension (LWORK) On exit, WORK(1) returns the minimal and optimal LWORK.
- LWORK (local or global input) INTEGER
-
The dimension of the array WORK.
LWORK is local input and must be at least
LWORK >= 2*LOCr(N+MOD(IA-1,MB_A)) +
MAX( 2, MAX(NB_A*CEIL(P-1,Q),LOCc(N+MOD(JA-1,NB_A)) +
NB_A*CEIL(Q-1,P)) ).
If LWORK = -1, then LWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.
- RWORK (local workspace/local output) REAL array,
- dimension (LRWORK) On exit, RWORK(1) returns the minimal and optimal LRWORK.
- LRWORK (local or global input) INTEGER
-
The dimension of the array RWORK.
LRWORK is local input and must be at least
LRWORK >= LOCc(N+MOD(JA-1,NB_A)).
If LRWORK = -1, then LRWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.
- INFO (global output) INTEGER
-
= 0: successful exit
< 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i.