PZDBTRF(1) compute a LU factorization of an N-by-N complex banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU

SYNOPSIS

SUBROUTINE PZDBTRF(
N, BWL, BWU, A, JA, DESCA, AF, LAF, WORK, LWORK, INFO )

    
INTEGER BWL, BWU, INFO, JA, LAF, LWORK, N

    
INTEGER DESCA( * )

    
COMPLEX*16 A( * ), AF( * ), WORK( * )

PURPOSE

PZDBTRF computes a LU factorization of an N-by-N complex banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU: A(1:N, JA:JA+N-1). Reordering is used to increase parallelism in the factorization. This reordering results in factors that are DIFFERENT from those produced by equivalent sequential codes. These factors cannot be used directly by users; however, they can be used in
subsequent calls to PZDBTRS to solve linear systems.

The factorization has the form


        P A(1:N, JA:JA+N-1) P^T = L U

where U is a banded upper triangular matrix and L is banded lower triangular, and P is a permutation matrix.