ral(4) Ralink Technology IEEE 802.11a/g/n wireless network device

SYNOPSIS

To compile this driver into the kernel, place the following lines in your kernel configuration file:
device ral device ralfw device wlan device wlan_amrr device firmware

Alternatively, to load the driver as a module at boot time, place the following line in loader.conf5:


if_ral_load="YES"

DESCRIPTION

The driver supports PCI/PCIe/CardBus wireless adapters based on the Ralink RT2500, RT2501, RT2600, RT2700, RT2800 and RT3090 chipsets.

The RT2500 chipset is the first generation of 802.11b/g adapters from Ralink. It consists of two integrated chips, an RT2560 MAC/BBP and an RT2525 radio transceiver.

The RT2501 chipset is the second generation of 802.11a/b/g adapters from Ralink. It consists of two integrated chips, an RT2561 MAC/BBP and an RT2527 radio transceiver. This chipset provides support for the IEEE 802.11e standard with multiple hardware transmission queues and allows scatter/gather for efficient DMA operations.

The RT2600 chipset consists of two integrated chips, an RT2661 MAC/BBP and an RT2529 radio transceiver. This chipset uses the MIMO (multiple-input multiple-output) technology with multiple radio transceivers to extend the operating range of the adapter and to achieve higher throughput. However, the RT2600 chipset does not support any of the 802.11n features.

The RT2700 chipset is a low-cost version of the RT2800 chipset. It supports a single transmit path and two receiver paths (1T2R). It consists of two integrated chips, an RT2760 or RT2790 (PCIe) MAC/BBP and an RT2720 (2.4GHz) or RT2750 (2.4GHz/5GHz) radio transceiver.

The RT2800 chipset is the first generation of 802.11n adapters from Ralink. It consists of two integrated chips, an RT2860 or RT2890 (PCIe) MAC/BBP and an RT2820 (2.4GHz) or RT2850 (2.4GHz/5GHz) radio transceiver. The RT2800 chipset supports two transmit paths and up to three receiver paths (2T2R/2T3R). It can achieve speeds up to 144Mbps (20MHz bandwidth) and 300Mbps (40MHz bandwidth.)

The RT3090 chipset is the first generation of single-chip 802.11n adapters from Ralink. supports station adhoc hostap mesh wds and monitor mode operation. Only one hostap or mesh virtual interface may be configured at a time. Any number of wds virtual interfaces may be configured together with a hostap interface. Multiple station interfaces may be operated together with a hostap interface to construct a wireless repeater device.

The transmit speed is user-selectable or can be adapted automatically by the driver depending on the number of hardware transmission retries. For more information on configuring this device, see ifconfig(8).

HARDWARE

The driver supports PCI/PCIe/CardBus wireless adapters based on Ralink Technology chipsets, including:

Card Ta MAC/BBP Ta Bus
"A-Link WL54H" Ta RT2560 Ta PCI
"A-Link WL54PC" Ta RT2560 Ta CardBus
"AirLink101 AWLC5025" Ta RT2661 Ta CardBus
"AirLink101 AWLH5025" Ta RT2661 Ta PCI
"Amigo AWI-914W" Ta RT2560 Ta CardBus
"Amigo AWI-922W" Ta RT2560 Ta mini-PCI
"Amigo AWI-926W" Ta RT2560 Ta PCI
"AMIT WL531C" Ta RT2560 Ta CardBus
"AMIT WL531P" Ta RT2560 Ta PCI
"AOpen AOI-831" Ta RT2560 Ta PCI
"ASUS WL-107G" Ta RT2560 Ta CardBus
"ASUS WL-130g" Ta RT2560 Ta PCI
"Atlantis Land A02-PCI-W54" Ta RT2560 Ta PCI
"Atlantis Land A02-PCM-W54" Ta RT2560 Ta CardBus
"Belkin F5D7000 v3" Ta RT2560 Ta PCI
"Belkin F5D7010 v2" Ta RT2560 Ta CardBus
"Billionton MIWLGRL" Ta RT2560 Ta mini-PCI
"Canyon CN-WF511" Ta RT2560 Ta PCI
"Canyon CN-WF513" Ta RT2560 Ta CardBus
"CC&C WL-2102" Ta RT2560 Ta CardBus
"CNet CWC-854" Ta RT2560 Ta CardBus
"CNet CWP-854" Ta RT2560 Ta PCI
"Compex WL54G" Ta RT2560 Ta CardBus
"Compex WLP54G" Ta RT2560 Ta PCI
"Conceptronic C54RC" Ta RT2560 Ta CardBus
"Conceptronic C54Ri" Ta RT2560 Ta PCI
"Digitus DN-7001G-RA" Ta RT2560 Ta CardBus
"Digitus DN-7006G-RA" Ta RT2560 Ta PCI
"E-Tech WGPC02" Ta RT2560 Ta CardBus
"E-Tech WGPI02" Ta RT2560 Ta PCI
"Edimax EW-7108PCg" Ta RT2560 Ta CardBus
"Edimax EW-7128g" Ta RT2560 Ta PCI
"Eminent EM3036" Ta RT2560 Ta CardBus
"Eminent EM3037" Ta RT2560 Ta PCI
"Encore ENLWI-G-RLAM" Ta RT2560 Ta PCI
"Encore ENPWI-G-RLAM" Ta RT2560 Ta CardBus
"Fiberline WL-400P" Ta RT2560 Ta PCI
"Fibreline WL-400X" Ta RT2560 Ta CardBus
"Gigabyte GN-WI01GS" Ta RT2561S Ta mini-PCI
"Gigabyte GN-WIKG" Ta RT2560 Ta mini-PCI
"Gigabyte GN-WMKG" Ta RT2560 Ta CardBus
"Gigabyte GN-WP01GS" Ta RT2561S Ta PCI
"Gigabyte GN-WPKG" Ta RT2560 Ta PCI
"Hawking HWC54GR" Ta RT2560 Ta CardBus
"Hawking HWP54GR" Ta RT2560 Ta PCI
"iNexQ CR054g-009 (R03)" Ta RT2560 Ta PCI
"JAHT WN-4054P" Ta RT2560 Ta CardBus
"JAHT WN-4054PCI" Ta RT2560 Ta PCI
"LevelOne WNC-0301 v2" Ta RT2560 Ta PCI
"LevelOne WPC-0301 v2" Ta RT2560 Ta CardBus
"Linksys WMP54G v4" Ta RT2560 Ta PCI
"Micronet SP906GK" Ta RT2560 Ta PCI
"Micronet SP908GK V3" Ta RT2560 Ta CardBus
"Minitar MN54GCB-R" Ta RT2560 Ta CardBus
"Minitar MN54GPC-R" Ta RT2560 Ta PCI
"MSI CB54G2" Ta RT2560 Ta CardBus
"MSI MP54G2" Ta RT2560 Ta mini-PCI
"MSI PC54G2" Ta RT2560 Ta PCI
"OvisLink EVO-W54PCI" Ta RT2560 Ta PCI
"PheeNet HWL-PCIG/RA" Ta RT2560 Ta PCI
"Pro-Nets CB80211G" Ta RT2560 Ta CardBus
"Pro-Nets PC80211G" Ta RT2560 Ta PCI
"Repotec RP-WB7108" Ta RT2560 Ta CardBus
"Repotec RP-WP0854" Ta RT2560 Ta PCI
"SATech SN-54C" Ta RT2560 Ta CardBus
"SATech SN-54P" Ta RT2560 Ta PCI
"Sitecom WL-112" Ta RT2560 Ta CardBus
"Sitecom WL-115" Ta RT2560 Ta PCI
"SMC SMCWCB-GM" Ta RT2661 Ta CardBus
"SMC SMCWPCI-GM" Ta RT2661 Ta PCI
"SparkLAN WL-685R" Ta RT2560 Ta CardBus
"Surecom EP-9321-g" Ta RT2560 Ta PCI
"Surecom EP-9321-g1" Ta RT2560 Ta PCI
"Surecom EP-9428-g" Ta RT2560 Ta CardBus
"Sweex LC500050" Ta RT2560 Ta CardBus
"Sweex LC700030" Ta RT2560 Ta PCI
"TekComm NE-9321-g" Ta RT2560 Ta PCI
"TekComm NE-9428-g" Ta RT2560 Ta CardBus
"Unex CR054g-R02" Ta RT2560 Ta PCI
"Unex MR054g-R02" Ta RT2560 Ta CardBus
"Zinwell ZWX-G160" Ta RT2560 Ta CardBus
"Zinwell ZWX-G360" Ta RT2560 Ta mini-PCI
"Zinwell ZWX-G361" Ta RT2560 Ta PCI
"Zonet ZEW1500" Ta RT2560 Ta CardBus
"Zonet ZEW1600" Ta RT2560 Ta PCI

EXAMPLES

Join an existing BSS network (i.e., connect to an access point):

"ifconfig wlan create wlandev ral0 inet 192.168.0.20 netmask 0xffffff00"

Join a specific BSS network with network name ``my_net ''

ifconfig wlan create wlandev ral0 inet 192.168.0.20 \
    netmask 0xffffff00 ssid my_net

Join a specific BSS network with 40-bit WEP encryption:

ifconfig wlan create wlandev ral0 inet 192.168.0.20 \
    netmask 0xffffff00 ssid my_net \
    wepmode on wepkey 0x1234567890 weptxkey 1

Join a specific BSS network with 104-bit WEP encryption:

ifconfig wlan create wlandev ral0 inet 192.168.0.20 \
    netmask 0xffffff00 ssid my_net \
    wepmode on wepkey 0x01020304050607080910111213 weptxkey 1

DIAGNOSTICS

"ral%d: could not load 8051 microcode"
An error occurred while attempting to upload the microcode to the onboard 8051 microcontroller unit.
"ral%d: timeout waiting for MCU to initialize"
The onboard 8051 microcontroller unit failed to initialize in time.
"ral%d: device timeout"
A frame dispatched to the hardware for transmission did not complete in time. The driver will reset the hardware. This should not happen.

HISTORY

The driver first appeared in Ox 3.7 . Support for the RT2501 and RT2600 chipsets was added in Ox 3.9 . Support for the RT2800 chipset was added in Ox 4.3 . Support for the RT2700 chipset was added in Ox 4.4 . Support for the RT3090 chipset was added in Ox 4.9 .

AUTHORS

The original driver was written by An Damien Bergamini Aq [email protected] .

CAVEATS

The driver does not make use of the hardware cryptographic engine.

The driver does not support any of the 802.11n capabilities offered by the RT2700 and RT2800 chipsets. Additional work is required in before those features can be supported.

Host AP mode doesn't support power saving. Clients attempting to use power saving mode may experience significant packet loss (disabling power saving on the client will fix this).

Some PCI adapters seem to strictly require a system supporting PCI 2.2 or greater and will likely not work in systems based on older revisions of the PCI specification. Check the board's PCI version before purchasing the card.