Introduction
On this page, several simple MLPACK examples are contained, in increasing order of complexity.
Covariance Computation
A simple program to compute the covariance of a data matrix ('data.csv'), assuming that the data is already centered, and save it to file.
// Includes all relevant components of MLPACK. #include <mlpack/core.hpp> // Convenience. using namespace mlpack; int main() { // First, load the data. arma::mat data; // Use data::Load() which transposes the matrix. data::Load("data.csv", data, true); // Now compute the covariance. We assume that the data is already centered. // Remember, because the matrix is column-major, the covariance operation is // transposed. arma::mat cov = data * trans(data) / data.n_cols; // Save the output. data::Save("cov.csv", cov, true); }
Nearest Neighbor
This simple program uses the mlpack::neighbor::NeighborSearch object to find the nearest neighbor of each point in a dataset using the L1 metric, and then print the index of the neighbor and the distance of it to stdout.
#include <mlpack/core.hpp> #include <mlpack/methods/neighbor_search/neighbor_search.hpp> using namespace mlpack; using namespace mlpack::neighbor; // NeighborSearch and NearestNeighborSort using namespace mlpack::metric; // ManhattanDistance int main() { // Load the data from data.csv (hard-coded). Use CLI for simple command-line // parameter handling. arma::mat data; data::Load("data.csv", data, true); // Use templates to specify that we want a NeighborSearch object which uses // the Manhattan distance. NeighborSearch<NearestNeighborSort, ManhattanDistance> nn(data); // Create the object we will store the nearest neighbors in. arma::Col<size_t> neighbors; arma::vec distances; // We need to store the distance too. // Compute the neighbors. nn.Search(1, neighbors, distances); // Write each neighbor and distance using Log. for (size_t i = 0; i < neighbors.n_elem; ++i) { Log::Info << "Nearest neighbor of point " << i << " is point " << neighbors[i] << " and the distance is " << distances[i] << ".; } }
Other examples
For more complex examples, it is useful to refer to the main executables:
- methods/neighbor_search/allknn_main.cpp
- methods/neighbor_search/allkfn_main.cpp
- methods/emst/emst_main.cpp
- methods/radical/radical_main.cpp
- methods/nca/nca_main.cpp
- methods/naive_bayes/nbc_main.cpp
- methods/pca/pca_main.cpp
- methods/lars/lars_main.cpp
- methods/linear_regression/linear_regression_main.cpp
- methods/gmm/gmm_main.cpp
- methods/kmeans/kmeans_main.cpp