SGBBRD(3)
reduces a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation
SYNOPSIS
- SUBROUTINE SGBBRD(
-
VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
LDQ, PT, LDPT, C, LDC, WORK, INFO )
-
CHARACTER
VECT
-
INTEGER
INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
-
REAL
AB( LDAB, * ), C( LDC, * ), D( * ), E( * ),
PT( LDPT, * ), Q( LDQ, * ), WORK( * )
PURPOSE
SGBBRD reduces a real general m-by-n band matrix A to upper
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
The routine computes B, and optionally forms Q or P', or computes
Q'*C for a given matrix C.
ARGUMENTS
- VECT (input) CHARACTER*1
-
Specifies whether or not the matrices Q and P' are to be
formed.
= 'N': do not form Q or P';
= 'Q': form Q only;
= 'P': form P' only;
= 'B': form both.
- M (input) INTEGER
-
The number of rows of the matrix A. M >= 0.
- N (input) INTEGER
-
The number of columns of the matrix A. N >= 0.
- NCC (input) INTEGER
-
The number of columns of the matrix C. NCC >= 0.
- KL (input) INTEGER
-
The number of subdiagonals of the matrix A. KL >= 0.
- KU (input) INTEGER
-
The number of superdiagonals of the matrix A. KU >= 0.
- AB (input/output) REAL array, dimension (LDAB,N)
-
On entry, the m-by-n band matrix A, stored in rows 1 to
KL+KU+1. The j-th column of A is stored in the j-th column of
the array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
On exit, A is overwritten by values generated during the
reduction.
- LDAB (input) INTEGER
-
The leading dimension of the array A. LDAB >= KL+KU+1.
- D (output) REAL array, dimension (min(M,N))
-
The diagonal elements of the bidiagonal matrix B.
- E (output) REAL array, dimension (min(M,N)-1)
-
The superdiagonal elements of the bidiagonal matrix B.
- Q (output) REAL array, dimension (LDQ,M)
-
If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
If VECT = 'N' or 'P', the array Q is not referenced.
- LDQ (input) INTEGER
-
The leading dimension of the array Q.
LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
- PT (output) REAL array, dimension (LDPT,N)
-
If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
If VECT = 'N' or 'Q', the array PT is not referenced.
- LDPT (input) INTEGER
-
The leading dimension of the array PT.
LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
- C (input/output) REAL array, dimension (LDC,NCC)
-
On entry, an m-by-ncc matrix C.
On exit, C is overwritten by Q'*C.
C is not referenced if NCC = 0.
- LDC (input) INTEGER
-
The leading dimension of the array C.
LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
- WORK (workspace) REAL array, dimension (2*max(M,N))
-
- INFO (output) INTEGER
-
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.