SYNOPSIS
 SUBROUTINE SGSVJ0(
 JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
 + SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 IMPLICIT NONE
 INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
 REAL EPS, SFMIN, TOL
 CHARACTER*1 JOBV
 REAL A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
 + WORK( LWORK )
PURPOSE
SGSVJ0 is called from SGESVJ as a preprocessor and that is its main purpose. It applies Jacobi rotations in the same way as SGESVJ does, but it does not check convergence (stopping criterion). Few tuning parameters (marked by [TP]) are available for the implementer. Further DetailsSGSVJ0 is used just to enable SGESVJ to call a simplified version of itself to work on a submatrix of the original matrix.
Contributors
~~~~~~~~~~~~
Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) Bugs, Examples and Comments
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Please report all bugs and send interesting test examples and comments to [email protected]. Thank you.
ARGUMENTS
 JOBV (input) CHARACTER*1

Specifies whether the output from this procedure is used
to compute the matrix V:
= 'V': the product of the Jacobi rotations is accumulated by postmulyiplying the NbyN array V. (See the description of V.) = 'A': the product of the Jacobi rotations is accumulated by postmulyiplying the MVbyN array V. (See the descriptions of MV and V.) = 'N': the Jacobi rotations are not accumulated.  M (input) INTEGER
 The number of rows of the input matrix A. M >= 0.
 N (input) INTEGER
 The number of columns of the input matrix A. M >= N >= 0.
 A (input/output) REAL array, dimension (LDA,N)
 On entry, MbyN matrix A, such that A*diag(D) represents the input matrix. On exit, A_onexit * D_onexit represents the input matrix A*diag(D) postmultiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in TOL and NSWEEP, respectively. (See the descriptions of D, TOL and NSWEEP.)
 LDA (input) INTEGER
 The leading dimension of the array A. LDA >= max(1,M).
 D (input/workspace/output) REAL array, dimension (N)
 The array D accumulates the scaling factors from the fast scaled Jacobi rotations. On entry, A*diag(D) represents the input matrix. On exit, A_onexit*diag(D_onexit) represents the input matrix postmultiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in TOL and NSWEEP, respectively. (See the descriptions of A, TOL and NSWEEP.)
 SVA (input/workspace/output) REAL array, dimension (N)
 On entry, SVA contains the Euclidean norms of the columns of the matrix A*diag(D). On exit, SVA contains the Euclidean norms of the columns of the matrix onexit*diag(D_onexit).
 MV (input) INTEGER
 If JOBV .EQ. 'A', then MV rows of V are postmultipled by a sequence of Jacobi rotations. If JOBV = 'N', then MV is not referenced.
 V (input/output) REAL array, dimension (LDV,N)
 If JOBV .EQ. 'V' then N rows of V are postmultipled by a sequence of Jacobi rotations. If JOBV .EQ. 'A' then MV rows of V are postmultipled by a sequence of Jacobi rotations. If JOBV = 'N', then V is not referenced.
 LDV (input) INTEGER
 The leading dimension of the array V, LDV >= 1. If JOBV = 'V', LDV .GE. N. If JOBV = 'A', LDV .GE. MV.
 EPS (input) INTEGER
 EPS = SLAMCH('Epsilon')
 SFMIN (input) INTEGER
 SFMIN = SLAMCH('Safe Minimum')
 TOL (input) REAL

TOL is the threshold for Jacobi rotations. For a pair
A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.  NSWEEP (input) INTEGER
 NSWEEP is the number of sweeps of Jacobi rotations to be performed.
 WORK (workspace) REAL array, dimension LWORK.
 LWORK (input) INTEGER
 LWORK is the dimension of WORK. LWORK .GE. M.
 INFO (output) INTEGER

= 0 : successful exit.
< 0 : if INFO = i, then the ith argument had an illegal value