SYNOPSIS
package require Tcl ?8.4?package require simulation::annealing 0.2
::simulation::annealing::getOption keyword
::simulation::annealing::hasOption keyword
::simulation::annealing::setOption keyword value
::simulation::annealing::findMinimum args
::simulation::annealing::findCombinatorialMinimum args
DESCRIPTION
The technique of simulated annealing provides methods to estimate the global optimum of a function. It is described in some detail on the Wiki http://wiki.tcl.tk/.... The idea is simple:
 randomly select points within a given search space
 evaluate the function to be optimised for each of these points and select the point that has the lowest (or highest) function value or  sometimes  accept a point that has a less optimal value. The chance by which such a nonoptimal point is accepted diminishes over time.
 Accepting less optimal points means the method does not necessarily get stuck in a local optimum and theoretically it is capable of finding the global optimum within the search space.
The method resembles the cooling of material, hence the name.
The package simulation::annealing offers the command findMinimum:

puts [::simulation::annealing::findMinimum trials 300 parameters {x 5.0 5.0 y 5.0 5.0} function {$x*$x+$y*$y+sin(10.0*$x)+4.0*cos(20.0*$y)}]

result 4.9112922923 x 0.181647676593 y 0.155743646974
PROCEDURES
The package defines the following auxiliary procedures: ::simulation::annealing::getOption keyword

Get the value of an option given as part of the findMinimum
command.

 string keyword
 Given keyword (without leading minus)

 ::simulation::annealing::hasOption keyword

Returns 1 if the option is available, 0 if not.

 string keyword
 Given keyword (without leading minus)

 ::simulation::annealing::setOption keyword value

Set the value of the given option.

 string keyword
 Given keyword (without leading minus)
 string value
 (New) value for the option

The main procedures are findMinimum and findCombinatorialMinimum:
 ::simulation::annealing::findMinimum args

Find the minimum of a function using simulated annealing. The function
and the method's parameters is given via a list of
keywordvalue pairs.

 int n
 List of keywordvalue pairs, all of which are available during the execution via the getOption command.

 ::simulation::annealing::findCombinatorialMinimum args

Find the minimum of a function of discrete variables using simulated
annealing. The function and the method's parameters is given via a list of
keywordvalue pairs.

 int n
 List of keywordvalue pairs, all of which are available during the execution via the getOption command.

The findMinimum command predefines the following options:
 parameters list: triples defining parameters and ranges
 function expr: expression defining the function
 code body: body of code to define the function (takes precedence over function). The code should set the variable "result"
 init code: code to be run at start up final code: code to be run at the end trials n: number of trials before reducing the temperature reduce factor: reduce the temperature by this factor (between 0 and 1) initialtemp t: initial temperature scale s: scale of the function (order of magnitude of the values) estimatescale y/n: estimate the scale (only if scale is not present) verbose y/n: print detailed information on progress to the report file (1) or not (0) reportfile file: opened file to print to (defaults to stdout)
Any other options can be used via the getOption procedure in the body. The findCombinatorialMinimum command predefines the following options:
 numberparams n: number of binary parameters (the solution space consists of lists of 1s and 0s). This is a required option.
 initialvalues: list of 1s and 0s constituting the start of the search.
The other predefined options are identical to those of findMinimum.
TIPS
The procedure findMinimum works by constructing a temporary procedure that does the actual work. It loops until the point representing the estimated optimum does not change anymore within the given number of trials. As the temperature gets lower and lower the chance of accepting a point with a higher value becomes lower too, so the procedure will in practice terminate.It is possible to optimise over a nonrectangular region, but some care must be taken:
 If the point is outside the region of interest, you can specify a very high value.
 This does mean that the automatic determination of a scale factor is out of the question  the high function values that force the point inside the region would distort the estimation.
Here is an example of finding an optimum inside a circle:

puts [::simulation::annealing::findMinimum trials 3000 reduce 0.98 parameters {x 5.0 5.0 y 5.0 5.0} code { if { hypot($x5.0,$y5.0) < 4.0 } { set result [expr {$x*$x+$y*$y+sin(10.0*$x)+4.0*cos(20.0*$y)}] } else { set result 1.0e100 } }]
You can use the final option to use a deterministic optimization method, once you are sure you are near the required optimum.
The findCombinatorialMinimum procedure is suited for situations where the parameters have the values 0 or 1 (and there can be many of them). Here is an example:

We have a function that attains an absolute minimum if the first ten
numbers are 1 and the rest is 0:

proc cost {params} { set cost 0 foreach p [lrange $params 0 9] { if { $p == 0 } { incr cost } } foreach p [lrange $params 10 end] { if { $p == 1 } { incr cost } } return $cost }

We want to find the solution that gives this minimum for various lengths
of the solution vector params:

foreach n {100 1000 10000} { break puts "Problem size: $n" puts [::simulation::annealing::findCombinatorialMinimum trials 300 verbose 0 numberparams $n code {set result [cost $params]}] }
 As the vector grows, the computation time increases, but the procedure will stop if some kind of equilibrium is reached. To achieve a useful solution you may want to try different values of the trials parameter for instance. Also ensure that the function to be minimized depends on all or most parameters  see the source code for a counter example and run that.
KEYWORDS
math, optimization, simulated annealingCATEGORY
MathematicsCOPYRIGHT
Copyright (c) 2008 Arjen Markus <[email protected]>