STFTRI(3) computes the inverse of a triangular matrix A stored in RFP format

SYNOPSIS

SUBROUTINE STFTRI(
TRANSR, UPLO, DIAG, N, A, INFO )

    
CHARACTER TRANSR, UPLO, DIAG

    
INTEGER INFO, N

    
REAL A( 0: * )

PURPOSE

STFTRI computes the inverse of a triangular matrix A stored in RFP format. This is a Level 3 BLAS version of the algorithm.

ARGUMENTS

TRANSR (input) CHARACTER
= 'N': The Normal TRANSR of RFP A is stored;
= 'T': The Transpose TRANSR of RFP A is stored.
UPLO (input) CHARACTER

= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER

= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (NT);
NT=N*(N+1)/2. On entry, the triangular factor of a Hermitian Positive Definite matrix A in RFP format. RFP format is described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
(0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is the transpose of RFP A as defined when TRANSR = 'N'. The contents of RFP A are defined by UPLO as follows: If UPLO = 'U' the RFP A contains the nt elements of upper packed A; If UPLO = 'L' the RFP A contains the nt elements of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N is odd. See the Note below for more details. On exit, the (triangular) inverse of the original matrix, in the same storage format.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse can not be computed.

FURTHER DETAILS

We first consider Rectangular Full Packed (RFP) Format when N is even. We give an example where N = 6.

    AP is Upper             AP is Lower

 00 01 02 03 04 05       00

    11 12 13 14 15       10 11

       22 23 24 25       20 21 22

          33 34 35       30 31 32 33

             44 45       40 41 42 43 44

                55       50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper.
For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower.
This covers the case N even and TRANSR = 'N'.

       RFP A                   RFP A

      03 04 05                33 43 53

      13 14 15                00 44 54

      23 24 25                10 11 55

      33 34 35                20 21 22

      00 44 45                30 31 32

      01 11 55                40 41 42

      02 12 22                50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:

         RFP A                   RFP A

   03 13 23 33 00 01 02    33 00 10 20 30 40 50

   04 14 24 34 44 11 12    43 44 11 21 31 41 51

   05 15 25 35 45 55 22    53 54 55 22 32 42 52
We first consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.

   AP is Upper                 AP is Lower

 00 01 02 03 04              00

    11 12 13 14              10 11

       22 23 24              20 21 22

          33 34              30 31 32 33

             44              40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper.
For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower.
This covers the case N odd and TRANSR = 'N'.

       RFP A                   RFP A

      02 03 04                00 33 43

      12 13 14                10 11 44

      22 23 24                20 21 22

      00 33 34                30 31 32

      01 11 44                40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:

         RFP A                   RFP A

   02 12 22 00 01             00 10 20 30 40 50

   03 13 23 33 11             33 11 21 31 41 51

   04 14 24 34 44             43 44 22 32 42 52