svm-landscape(1) Command line interface to svm-landscape in mlpy (version 2.2.0)

SYNOPSIS

svm-landscape [,options/]

OPTIONS

-h, --help
show this help message and exit
-d FILE, --data=,FILE/
data - required
-s, --standardize
standardize data
-n, --normalize
normalize data
-k K
k for k-fold cross validation
-c SETS PAIRS
sets and pairs for monte carlo cross validation
-S, --stratified
for stratified cv
-K KERNEL, --kernel=,KERNEL/
kernel: 'linear', 'gaussian', 'polynomial', 'tr' [default linear]
-P KPARAMETER, --kparameter=,KPARAMETER/
kernel parameter (two sigma squared) for gaussian and polynomial kernels [default 0.1]
-o COST, --cost=,COST/
for cost-sensitive classification [-1.0, 1.0] [default 0.0]
-m MIN, --min=,MIN/
min value for regularization parameter [default -5]
-M MAX, --max=,MAX/
max value for regularization parameter [default 5]
-p STEPS, --steps=,STEPS/
steps for regularization parameter [default 11]
-e SCALE, --scale=,SCALE/
scale for regularization parameter: 'lin' or 'log' [default log]
-l, --lists
Canberra distance indicator
-a, --auc
Wmw_auc metric computation