ZGESC2(3) solves a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by ZGETC2

SYNOPSIS

SUBROUTINE ZGESC2(
N, A, LDA, RHS, IPIV, JPIV, SCALE )

    
INTEGER LDA, N

    
DOUBLE PRECISION SCALE

    
INTEGER IPIV( * ), JPIV( * )

    
COMPLEX*16 A( LDA, * ), RHS( * )

PURPOSE

ZGESC2 solves a system of linear equations

ARGUMENTS

N (input) INTEGER
The number of columns of the matrix A.
A (input) COMPLEX*16 array, dimension (LDA, N)
On entry, the LU part of the factorization of the n-by-n matrix A computed by ZGETC2: A = P * L * U * Q
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, N).
RHS (input/output) COMPLEX*16 array, dimension N.
On entry, the right hand side vector b. On exit, the solution vector X.
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i).
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the matrix has been interchanged with column JPIV(j).
SCALE (output) DOUBLE PRECISION
On exit, SCALE contains the scale factor. SCALE is chosen 0 <= SCALE <= 1 to prevent owerflow in the solution.

FURTHER DETAILS

Based on contributions by

   Bo Kagstrom and Peter Poromaa, Department of Computing Science,
   Umea University, S-901 87 Umea, Sweden.