ZLANHF(3) returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix A in RFP format

SYNOPSIS

DOUBLE PRECISION
FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK )

    
CHARACTER NORM, TRANSR, UPLO

    
INTEGER N

    
DOUBLE PRECISION WORK( 0: * )

    
COMPLEX*16 A( 0: * )

PURPOSE

ZLANHF returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix A in RFP format.

DESCRIPTION

ZLANHF returns the value

   ZLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'

            (

            ( norm1(A),         NORM = '1', 'O' or 'o'

            (

            ( normI(A),         NORM = 'I' or 'i'

            (

            ( normF(A),         NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

ARGUMENTS

NORM (input) CHARACTER
Specifies the value to be returned in ZLANHF as described above.
TRANSR (input) CHARACTER
Specifies whether the RFP format of A is normal or conjugate-transposed format. = 'N': RFP format is Normal
= 'C': RFP format is Conjugate-transposed
UPLO (input) CHARACTER
On entry, UPLO specifies whether the RFP matrix A came from an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' RFP A came from an upper triangular matrix UPLO = 'L' or 'l' RFP A came from a lower triangular matrix
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, ZLANHF is set to zero.
A (input) COMPLEX*16 array, dimension ( N*(N+1)/2 );
On entry, the matrix A in RFP Format. RFP Format is described by TRANSR, UPLO and N as follows:
If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as defined when TRANSR = 'N'. The contents of RFP A are defined by UPLO as follows: If UPLO = 'U' the RFP A contains the ( N*(N+1)/2 ) elements of upper packed A either in normal or conjugate-transpose Format. If UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements of lower packed A either in normal or conjugate-transpose Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and is N when is odd. See the Note below for more details. Unchanged on exit.
WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, WORK is not referenced.

FURTHER DETAILS

We first consider Standard Packed Format when N is even.
We give an example where N = 6.

    AP is Upper             AP is Lower

 00 01 02 03 04 05       00

    11 12 13 14 15       10 11

       22 23 24 25       20 21 22

          33 34 35       30 31 32 33

             44 45       40 41 42 43 44

                55       50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of conjugate-transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of conjugate-transpose of the last three columns of AP lower. To denote conjugate we place -- above the element. This covers the case N even and TRANSR = 'N'.

       RFP A                   RFP A

                              -- -- --

      03 04 05                33 43 53

                                 -- --

      13 14 15                00 44 54

                                    --

      23 24 25                10 11 55

      33 34 35                20 21 22

      --

      00 44 45                30 31 32

      -- --

      01 11 55                40 41 42

      -- -- --

      02 12 22                50 51 52
Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above. One therefore gets:

         RFP A                   RFP A

   -- -- -- --                -- -- -- -- -- --

   03 13 23 33 00 01 02    33 00 10 20 30 40 50

   -- -- -- -- --                -- -- -- -- --

   04 14 24 34 44 11 12    43 44 11 21 31 41 51

   -- -- -- -- -- --                -- -- -- --

   05 15 25 35 45 55 22    53 54 55 22 32 42 52
We next consider Standard Packed Format when N is odd.
We give an example where N = 5.

   AP is Upper                 AP is Lower

 00 01 02 03 04              00

    11 12 13 14              10 11

       22 23 24              20 21 22

          33 34              30 31 32 33

             44              40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of conjugate-transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of conjugate-transpose of the last two columns of AP lower. To denote conjugate we place -- above the element. This covers the case N odd and TRANSR = 'N'.

       RFP A                   RFP A

                                 -- --

      02 03 04                00 33 43

                                    --

      12 13 14                10 11 44

      22 23 24                20 21 22

      --

      00 33 34                30 31 32

      -- --

      01 11 44                40 41 42
Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above. One therefore gets:

         RFP A                   RFP A

   -- -- --                   -- -- -- -- -- --

   02 12 22 00 01             00 10 20 30 40 50

   -- -- -- --                   -- -- -- -- --

   03 13 23 33 11             33 11 21 31 41 51

   -- -- -- -- --                   -- -- -- --

   04 14 24 34 44             43 44 22 32 42 52