SYNOPSIS
- SUBROUTINE ZLAR2V(
- N, X, Y, Z, INCX, C, S, INCC )
- INTEGER INCC, INCX, N
- DOUBLE PRECISION C( * )
- COMPLEX*16 S( * ), X( * ), Y( * ), Z( * )
PURPOSE
ZLAR2V applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n( x(i) z(i) ) :=
( conjg(z(i)) y(i) )
( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) )
( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) )
ARGUMENTS
- N (input) INTEGER
- The number of plane rotations to be applied.
- X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
- The vector x; the elements of x are assumed to be real.
- Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
- The vector y; the elements of y are assumed to be real.
- Z (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
- The vector z.
- INCX (input) INTEGER
- The increment between elements of X, Y and Z. INCX > 0.
- C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
- The cosines of the plane rotations.
- S (input) COMPLEX*16 array, dimension (1+(N-1)*INCC)
- The sines of the plane rotations.
- INCC (input) INTEGER
-
The increment between elements of C and S. INCC > 0.