ZLAR2V(3) applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices,

SYNOPSIS

SUBROUTINE ZLAR2V(
N, X, Y, Z, INCX, C, S, INCC )

    
INTEGER INCC, INCX, N

    
DOUBLE PRECISION C( * )

    
COMPLEX*16 S( * ), X( * ), Y( * ), Z( * )

PURPOSE

ZLAR2V applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n
   (       x(i)  z(i) ) :=

   ( conjg(z(i)) y(i) )

     (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
     ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )

ARGUMENTS

N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector x; the elements of x are assumed to be real.
Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector y; the elements of y are assumed to be real.
Z (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector z.
INCX (input) INTEGER
The increment between elements of X, Y and Z. INCX > 0.
C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) COMPLEX*16 array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.