SYNOPSIS
 SUBROUTINE ZSYMM
 ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC )
 CHARACTER*1 SIDE, UPLO
 INTEGER M, N, LDA, LDB, LDC
 COMPLEX*16 ALPHA, BETA
 COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
PURPOSE
ZSYMM performs one of the matrixmatrix operations
or
C := alpha*B*A + beta*C,
where alpha and beta are scalars, A is a symmetric matrix and B and
C are m by n matrices.
PARAMETERS
 SIDE  CHARACTER*1.

On entry, SIDE specifies whether the symmetric matrix A
appears on the left or right in the operation as follows:
SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
Unchanged on exit.
 UPLO  CHARACTER*1.

On entry, UPLO specifies whether the upper or lower
triangular part of the symmetric matrix A is to be
referenced as follows:
UPLO = 'U' or 'u' Only the upper triangular part of the symmetric matrix is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of the symmetric matrix is to be referenced.
Unchanged on exit.
 M  INTEGER.
 On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit.
 N  INTEGER.
 On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit.
 ALPHA  COMPLEX*16 .
 On entry, ALPHA specifies the scalar alpha. Unchanged on exit.
 A  COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
 m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit.
 LDA  INTEGER.
 On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit.
 B  COMPLEX*16 array of DIMENSION ( LDB, n ).
 Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit.
 LDB  INTEGER.
 On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit.
 BETA  COMPLEX*16 .
 On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit.
 C  COMPLEX*16 array of DIMENSION ( LDC, n ).
 Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix.
 LDC  INTEGER.

On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).
Unchanged on exit.
Level 3 Blas routine.
 Written on 8February1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd.