SYNOPSIS
- SUBROUTINE ZUNMRZ(
- SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
- CHARACTER SIDE, TRANS
- INTEGER INFO, K, L, LDA, LDC, LWORK, M, N
- COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
PURPOSE
ZUNMRZ overwrites the general complex M-by-N matrix C with TRANS = 'C': Q**H * C C * Q**Hwhere Q is a complex unitary matrix defined as the product of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by ZTZRZF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
ARGUMENTS
- SIDE (input) CHARACTER*1
-
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right. - TRANS (input) CHARACTER*1
-
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H. - M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
- K (input) INTEGER
- The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
- L (input) INTEGER
- The number of columns of the matrix A containing the meaningful part of the Householder reflectors. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
- A (input) COMPLEX*16 array, dimension
- (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ZTZRZF in the last k rows of its array argument A. A is modified by the routine but restored on exit.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,K).
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZTZRZF.
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
- WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- LWORK (input) INTEGER
- The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
Based on contributions byA. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA