SYNOPSIS
create_bmp_for_circ_in_rect [options... ] d W H x y Er outfile.bmpWARNING
This man page is not a complete set of documentation - the complexity of the atlc project makes man pages not an ideal way to document it, although out of completeness, man pages are produced. The best documentation that was current at the time the version was produced should be found on your hard drive, usually at/usr/local/share/atlc/docs/html-docs/index.html
although it might be elsewhere if your system administrator chose to install the package elsewhere. Sometimes, errors are corrected in the documentation and placed at http://atlc.sourceforge.net/ before a new release of atlc is released. Please, if you notice a problem with the documentation - even spelling errors and typos, please let me know.
DESCRIPTION
create_bmp_for_circ_in_rect is a pre-processor for atlc, the finite difference program that is used to calculate the properties of a two-conductor electrical transmission line of arbitrary cross section. The program create_bmp_for_circ_in_rect is used as a fast way of generating bitmaps (there is no need to use a graphics program), for a circular conductor inside a rectangular conductor, like this:
-------------------------------------------------------- ^
| | |
| | |
| | |
| | |
| | |
| Dielectric, permittivity=Er | |
| | |
| | |
| | |
| | |
| <------x------> ^ | H
| ***** | | |
| *********** y | |
| ************* | | |
| ************** | | |
| <-----d------> v | |
| ************** | |
| ************* | |
| *********** | |
| *** | |
| | |
------------------------------------------------------- v
<---------------------------W-------------------------->
The parameters 'W' and 'H' and the inner dimensions of the outer conductor. The inner conductor has a diameter of 'd' and is offset from the centre of the outer conductor by an amount 'x' horizontally and 'y' vertically. The space between the inner and outer conductors is a dielectric of relative permittivity 'Er'. If there is just a vacuum dielectric, then 'Er' should be set to 1.0
The bitmap is printed to standard output, which MUST be re-directed
to either a file in one of the following two ways.
create_bmp_for_circ_in_rect d W H x y Er > filename.bmp OR
create_bmp_for_circ_in_rect -f filename.bmp d W H x y Er
The bitmaps produced by create_bmp_for_circ_in_rect are 24-bit bit colour bitmaps, as are required by atlc.
The permittivities of the bitmap, set by 'Er', determine the colours in the bitmap. If Er1 is 1.0, 1.006, 2.1, 2.2, 2.33, 2.5, 3.3, 3.335, 3.7, 4.8, 10.2 or 100 then the colour corresponding to that permittivity will be set according to the colours defined in COLOURS below. If Er is not one of those permittivities, the region of permittivity Er will be set to the colour 0xCAFF00. The program atlc does not know what these permittivites are, so atlc, must be told with the -d command line option, as in example 4 below.
OPTIONS
-b bitmapsizeis used to set the size of the bitmap, and so the accuracy to which atlc is able to calculate the transmission line's properties. The default value for 'bitmapsize' is normally 4, although this is set at compile time. The value can be set anywhere from 1 to 15, but more than 8 is probably not sensible.
-f outfile
-v
Causes create_bmp_for_circ_in_rect to print some data to stderr. Note, nothing
extra goes to standard output, as that is expected to be redirected to a
bitmap file.
COLOURS
The 24-bit bitmaps that atlc expects, have 8 bits assigned to represent the amount of red, 8 for blue and 8 for green. Hence there are 256 levels of red, green and blue, making a total of 256*256*256=16777216 colours. Every one of the possible 16777216 colours can be defined precisely by the stating the exact amount of red, green and blue, as in:
red = 255,000,000 or 0xff0000
green = 000,255,000 or 0x00ff00
blue = 000,000,255 or 0x0000ff
black = 000,000,000 or 0x000000
white = 255,255,255 or 0xffffff
Brown = 255,000,255 or 0xff00ff
gray = 142,142,142 or 0x8e8e8e
Some colours, such as pink, turquoise, sandy, brown, gray etc may mean slightly
different things to different people. This is not so with atlc, as the
program expects the colours below to be EXACTLY defined as given. Whether
you feel the colour is sandy or yellow is up to you, but if you use it in
your bitmap, then it either needs to be a colour recognised by atlc, or
you must define it with a command line option (see OPTIONS and example 5
below).
The following conductors are recognised by atlc:
red = 255,000,000 or 0xff0000 is the live conductor.
green = 000,255,000 or 0x00ff00 is the grounded conductor.
black = 000,000,000 or 0x000000 is the negative conductor
All bitmaps must have the live (red) and grounded (green) conductor. The black conductor is not currently supported, but it will be used to indicate a negative conductor, which will be needed if/when the program gets extended to analyse directional couplers.
The following dielectrics are recognised by atlc and so are produced by create_bmp_for_circ_in_rect.
white 255,255,255 or 0xFFFFFF as Er=1.0 (vacuum)
white 255,202,202 or 0xFFCACA as Er=1.0006 (air)
blue 000,000,255 or 0x0000FF as Er=2.1 (PTFE)
Mid gray 142,242,142 or 0x8E8E8E as Er=2.2 (duroid 5880)
mauve 255.000,255 or 0xFF00FF as Er=2.33 (polyethylene)
yellow 255,255,000 or 0xFFFF00 as Er=2.5 (polystyrene)
sandy 239,203,027 or 0xEFCC1A as Er=3.3 (PVC)
brown 188,127,096 or 0xBC7F60 as Er=3.335 (epoxy resin)
Turquoise 026,239,179 or 0x1AEFB3 as Er=4.8 (glass PCB)
Dark gray 142,142,142 or ox696969 as Er=6.15 (duroid 6006)
L. gray 240,240,240 or 0xDCDCDC as Er=10.2 (duroid 6010)
D. Orange 213,160,077 or 0xD5A04D as Er=100 (for testing)
If the permittivity is one not in the above list, then those parts of
the image with Er1 will be set to 0xCAFF00, and those parts with Er2 to
0xAC82AC.
EXAMPLES
Here are a few examples of the use of create_bmp_for_circ_in_rect. Again, see the html documentation in atlc-X.Y.Z/docs/html-docs for more examples.In the first example, there is just an air dielectric, so Er1=Er2=1.0. The inner of 1x1 inches (or mm, miles etc) is placed centrally in an outer with dimensions 3 x 3 inches.
The exact place where the dielectric starts (a) and its width (d) are unimportant, but they must still be entered.
% create_bmp_for_circ_in_rect 3 3 1 1 1 1 1 1 > ex1.bmp
% atlc ex1.bmp
In this second example, an inner of 15.0 mm x 0.5 mm is surrounded by an outer with internal dimensions of 61.5 x 20.1 mm. There is a material with permittivity 2.1 (Er of PTFE) below the inner conductor. The output from create_bmp_for_circ_in_rect is sent to a file ex1.bmp, which is then processed by atlc
% create_bmp_for_circ_in_rect 61.5 20.1 5 22 0.5 50 15 5 1.0 2.1 > ex2.bmp
% atlc ex2.bmp
In example 3, the bitmap is made larger, to increase accuracy, but
otherwise this is identical to the second example.
% create_bmp_for_circ_in_rect -b7 61.5 20.1 5 22 0.5 50 15 5 1.0 2.1 > ex3.bmp
% atlc ex3.bmp
In the fourth example, instead of re-directing create_bmp_for_circ_in_rect's output
to a file with the > sign, it is done using the -f option.
% create_bmp_for_circ_in_rect -f ex4.bmp 61.5 20.1 5 22 0.5 50 15 5 1.0 2.1
% atlc ex4.bmp
In the fifth example, materials with permittivites 2.78 and 7.89 are used. While there is no change in how to use create_bmp_for_circ_in_rect, since these permittivities are not known, we must tell atlc what they are. % create_bmp_for_circ_in_rect 61 20 1 4 22 0.5 50 15 5 2.78 7.89 > ex5.bmp % atlc -d CAFF00=2.78 -d AC82AC=7.89 ex5.bmp In the sixth and final example, the -v option is used to print some extra data to stderr from create_bmp_for_circ_in_rect.