DGBBRD(3)
            reduces a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation
        
      
        
SYNOPSIS
- SUBROUTINE DGBBRD(
- 
VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
LDQ, PT, LDPT, C, LDC, WORK, INFO )
 
- 
CHARACTER
VECT
 
- 
INTEGER
INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
 
- 
DOUBLE
PRECISION AB( LDAB, * ), C( LDC, * ), D( * ), E( * ),
PT( LDPT, * ), Q( LDQ, * ), WORK( * )
 
PURPOSE
DGBBRD reduces a real general m-by-n band matrix A to upper
bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
The routine computes B, and optionally forms Q or P', or computes
Q'*C for a given matrix C.
ARGUMENTS
- VECT    (input) CHARACTER*1
- 
Specifies whether or not the matrices Q and P' are to be
formed.
= 'N': do not form Q or P';
 = 'Q': form Q only;
 = 'P': form P' only;
 = 'B': form both.
- M       (input) INTEGER
- 
The number of rows of the matrix A.  M >= 0.
- N       (input) INTEGER
- 
The number of columns of the matrix A.  N >= 0.
- NCC     (input) INTEGER
- 
The number of columns of the matrix C.  NCC >= 0.
- KL      (input) INTEGER
- 
The number of subdiagonals of the matrix A. KL >= 0.
- KU      (input) INTEGER
- 
The number of superdiagonals of the matrix A. KU >= 0.
- AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
- 
On entry, the m-by-n band matrix A, stored in rows 1 to
KL+KU+1. The j-th column of A is stored in the j-th column of
the array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
On exit, A is overwritten by values generated during the
reduction.
- LDAB    (input) INTEGER
- 
The leading dimension of the array A. LDAB >= KL+KU+1.
- D       (output) DOUBLE PRECISION array, dimension (min(M,N))
- 
The diagonal elements of the bidiagonal matrix B.
- E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
- 
The superdiagonal elements of the bidiagonal matrix B.
- Q       (output) DOUBLE PRECISION array, dimension (LDQ,M)
- 
If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
If VECT = 'N' or 'P', the array Q is not referenced.
- LDQ     (input) INTEGER
- 
The leading dimension of the array Q.
LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
- PT      (output) DOUBLE PRECISION array, dimension (LDPT,N)
- 
If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
If VECT = 'N' or 'Q', the array PT is not referenced.
- LDPT    (input) INTEGER
- 
The leading dimension of the array PT.
LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
- C       (input/output) DOUBLE PRECISION array, dimension (LDC,NCC)
- 
On entry, an m-by-ncc matrix C.
On exit, C is overwritten by Q'*C.
C is not referenced if NCC = 0.
- LDC     (input) INTEGER
- 
The leading dimension of the array C.
LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
- WORK    (workspace) DOUBLE PRECISION array, dimension (2*max(M,N))
- 
- INFO    (output) INTEGER
- 
= 0:  successful exit.
 < 0:  if INFO = -i, the i-th argument had an illegal value.