SYNOPSIS
- SUBROUTINE DLAR2V(
- N, X, Y, Z, INCX, C, S, INCC )
- INTEGER INCC, INCX, N
- DOUBLE PRECISION C( * ), S( * ), X( * ), Y( * ), Z( * )
PURPOSE
DLAR2V applies a vector of real plane rotations from both sides to a sequence of 2-by-2 real symmetric matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) )
( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) )
ARGUMENTS
- N (input) INTEGER
- The number of plane rotations to be applied.
- X (input/output) DOUBLE PRECISION array,
- dimension (1+(N-1)*INCX) The vector x.
- Y (input/output) DOUBLE PRECISION array,
- dimension (1+(N-1)*INCX) The vector y.
- Z (input/output) DOUBLE PRECISION array,
- dimension (1+(N-1)*INCX) The vector z.
- INCX (input) INTEGER
- The increment between elements of X, Y and Z. INCX > 0.
- C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
- The cosines of the plane rotations.
- S (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
- The sines of the plane rotations.
- INCC (input) INTEGER
-
The increment between elements of C and S. INCC > 0.