SYNOPSIS
- SUBROUTINE DORGQL(
- M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
- INTEGER INFO, K, LDA, LWORK, M, N
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
PURPOSE
DORGQL generates an M-by-N real matrix Q with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order MQ = H(k) . . . H(2) H(1)
as returned by DGEQLF.
ARGUMENTS
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix Q. M >= N >= 0.
- K (input) INTEGER
- The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0.
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the (n-k+i)-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQLF in the last k columns of its array argument A. On exit, the M-by-N matrix Q.
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQLF.
- WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N). For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value