DSPTRS(3)
solves a system of linear equations A*X = B with a real symmetric matrix A stored in packed format using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF
SYNOPSIS
- SUBROUTINE DSPTRS(
-
UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
-
CHARACTER
UPLO
-
INTEGER
INFO, LDB, N, NRHS
-
INTEGER
IPIV( * )
-
DOUBLE
PRECISION AP( * ), B( LDB, * )
PURPOSE
DSPTRS solves a system of linear equations A*X = B with a real
symmetric matrix A stored in packed format using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
ARGUMENTS
- UPLO (input) CHARACTER*1
-
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
- N (input) INTEGER
-
The order of the matrix A. N >= 0.
- NRHS (input) INTEGER
-
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
- AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
-
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSPTRF, stored as a
packed triangular matrix.
- IPIV (input) INTEGER array, dimension (N)
-
Details of the interchanges and the block structure of D
as determined by DSPTRF.
- B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
-
On entry, the right hand side matrix B.
On exit, the solution matrix X.
- LDB (input) INTEGER
-
The leading dimension of the array B. LDB >= max(1,N).
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value