DSTEV(3) computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A

SYNOPSIS

SUBROUTINE DSTEV(
JOBZ, N, D, E, Z, LDZ, WORK, INFO )

    
CHARACTER JOBZ

    
INTEGER INFO, LDZ, N

    
DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )

PURPOSE

DSTEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A.

ARGUMENTS

JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix A. On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A, stored in elements 1 to N-1 of E. On exit, the contents of E are destroyed.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with D(i). If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
If JOBZ = 'N', WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of E did not converge to zero.