hack_array(7) container in distributed environment (rheolef-6.7)

SYNOPSYS

STL-like vector container for a distributed memory machine model. Contrarily to disarray<T>, here T can have a size only known at compile time. This class is used when T is a geo_element raw class, i.e. T=geo_element_e_raw. The size of the geo_element depends upon the oder and is known only at run-time. For efficiency purpose, the hack_array allocate all geo_elements of the same variant (e.g. edge) and order in a contiguous area, since the coreesponding element size is constant.

EXAMPLE


 A sample usage of the class is:

    std::pair<size_t,size_t> param (reference_element::t, 3); // triangle, order=3
    hack_array<geo_element_raw> x (distributor(100), param);

The hack_array<T> interface is similar to those of the disarray<T> one.

OBJECT REQUIREMENT


 There are many pre-requises for the template objet type T:

    class T : public T::generic_type {
     typedef variant_type;
     typedef raw_type;
     typedef genetic_type;
     typedef automatic_type;
     static const variant_type _variant;
     static size_t _data_size(const parameter_type& param);
     static size_t _value_size(const parameter_type& param);
    };
    class T::automatic_type : public T::generic_type {
     automatic_type (const parameter_type& param);
    };
    class T::generic_type {
     typedef raw_type;
     typedef iterator;
     typedef const_iterator;
     iterator _data_begin();
     const_iterator _data_begin() const;
    };
    ostream& operator<< (ostream&, const T::generic_type&);

IMPLEMENTATION

template <class T, class A>
class hack_array<T,sequential,A> : public smart_pointer<hack_array_seq_rep<T,A> > {
public:
// typedefs:
    typedef hack_array_seq_rep<T,A>    rep;
    typedef smart_pointer<rep>            base;
    typedef sequential                    memory_type;
    typedef typename rep::size_type       size_type;
    typedef typename rep::value_type      value_type;
    typedef typename rep::reference       reference;
    typedef typename rep::dis_reference   dis_reference;
    typedef typename rep::iterator        iterator;
    typedef typename rep::const_reference const_reference;
    typedef typename rep::const_iterator  const_iterator;
    typedef typename rep::parameter_type  parameter_type;
// allocators:
    hack_array (const A& alloc = A());
    hack_array (size_type loc_size,           const parameter_type& param, const A& alloc = A());
    void resize   (const distributor& ownership, const parameter_type& param);
    hack_array (const distributor& ownership, const parameter_type& param, const A& alloc = A());
    void resize   (size_type loc_size,           const parameter_type& param);
// local accessors & modifiers:
    A get_allocator() const              { return base::data().get_allocator(); }
    size_type     size () const          { return base::data().size(); }
    size_type dis_size () const          { return base::data().dis_size(); }
    const distributor& ownership() const { return base::data().ownership(); }
    const communicator& comm() const     { return ownership().comm(); }
    reference       operator[] (size_type i)       { return base::data().operator[] (i); }
    const_reference operator[] (size_type i) const { return base::data().operator[] (i); }
    const_reference dis_at (size_type dis_i) const { return base::data().operator[] (dis_i); }
          iterator begin()       { return base::data().begin(); }
    const_iterator begin() const { return base::data().begin(); }
          iterator end()         { return base::data().end(); }
    const_iterator end() const   { return base::data().end(); }
// global accessors (for compatibility with distributed interface):
    template<class Set> void append_dis_indexes (const Set& ext_idx_set) const {}
    void update_dis_entries() const {}
// global modifiers (for compatibility with distributed interface):
    dis_reference dis_entry (size_type dis_i) { return operator[] (dis_i); }
    void dis_entry_assembly()                 {}
    template<class SetOp>
    void dis_entry_assembly(SetOp my_set_op)        {}
    template<class SetOp>
    void dis_entry_assembly_begin (SetOp my_set_op) {}
    template<class SetOp>
    void dis_entry_assembly_end (SetOp my_set_op)   {}
// apply a partition:
#ifdef TODO
    template<class RepSize>
    void repartition (                               // old_numbering for *this
        const RepSize&         partition,            // old_ownership
        hack_array<T,sequential,A>& new_array,       // new_ownership (created)
        RepSize&               old_numbering,        // new_ownership
        RepSize&               new_numbering) const  // old_ownership
        { return base::data().repartition (partition, new_array, old_numbering, new_numbering); }
    template<class RepSize>
    void permutation_apply (                       // old_numbering for *this
        const RepSize&          new_numbering,     // old_ownership
        hack_array<T,sequential,A>&  new_array) const   // new_ownership (already allocated)
        { return base::data().permutation_apply (new_numbering, new_array); }
#endif // TODO
// i/o:
    odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
    idiststream& get_values (idiststream& ips)       { return base::data().get_values(ips); }
    template <class GetFunction>
    idiststream& get_values (idiststream& ips, GetFunction get_element)       { return base::data().get_values(ips, get_element); }
    template <class PutFunction>
    odiststream& put_values (odiststream& ops, PutFunction put_element) const { return base::data().put_values(ops, put_element); }
#ifdef TODO
    void dump (std::string name) const { return base::data().dump(name); }
#endif // TODO
};

IMPLEMENTATION

template <class T, class A>
class hack_array<T,distributed,A> : public smart_pointer<hack_array_mpi_rep<T,A> > {
public:
// typedefs:
    typedef hack_array_mpi_rep<T,A>    rep;
    typedef smart_pointer<rep>            base;
    typedef distributed                   memory_type;
    typedef typename rep::size_type       size_type;
    typedef typename rep::value_type      value_type;
    typedef typename rep::reference       reference;
    typedef typename rep::dis_reference   dis_reference;
    typedef typename rep::iterator        iterator;
    typedef typename rep::parameter_type  parameter_type;
    typedef typename rep::const_reference const_reference;
    typedef typename rep::const_iterator  const_iterator;
    typedef typename rep::scatter_map_type scatter_map_type;
// allocators:
    hack_array (const A& alloc = A());
    hack_array (const distributor& ownership, const parameter_type& param, const A& alloc = A());
    void resize   (const distributor& ownership, const parameter_type& param);
// local accessors & modifiers:
    A get_allocator() const              { return base::data().get_allocator(); }
    size_type     size () const          { return base::data().size(); }
    size_type dis_size () const          { return base::data().dis_size(); }
    const distributor& ownership() const { return base::data().ownership(); }
    const communicator& comm() const     { return base::data().comm(); }
    reference       operator[] (size_type i)       { return base::data().operator[] (i); }
    const_reference operator[] (size_type i) const { return base::data().operator[] (i); }
          iterator begin()       { return base::data().begin(); }
    const_iterator begin() const { return base::data().begin(); }
          iterator end()         { return base::data().end(); }
    const_iterator end() const   { return base::data().end(); }
// global accessor:
    template<class Set, class Map>
    void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().append_dis_entry (ext_idx_set, ext_idx_map); }
    template<class Set, class Map>
    void get_dis_entry    (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().get_dis_entry (ext_idx_set, ext_idx_map); }
    template<class Set>
    void append_dis_indexes (const Set& ext_idx_set) const { base::data().append_dis_indexes (ext_idx_set); }
    template<class Set>
    void set_dis_indexes    (const Set& ext_idx_set)  { base::data().set_dis_indexes (ext_idx_set); }
    const_reference dis_at (size_type dis_i) const { return base::data().dis_at (dis_i); }
    // get all external pairs (dis_i, values):
    const scatter_map_type& get_dis_map_entries() const { return base::data().get_dis_map_entries(); }
    void update_dis_entries() const { base::data().update_dis_entries(); }
// global modifiers (for compatibility with distributed interface):
    dis_reference dis_entry (size_type dis_i)       { return base::data().dis_entry(dis_i); }
    void dis_entry_assembly()                       { return base::data().dis_entry_assembly(); }
    template<class SetOp>
    void dis_entry_assembly       (SetOp my_set_op) { return base::data().dis_entry_assembly       (my_set_op); }
    template<class SetOp>
    void dis_entry_assembly_begin (SetOp my_set_op) { return base::data().dis_entry_assembly_begin (my_set_op); }
    template<class SetOp>
    void dis_entry_assembly_end   (SetOp my_set_op) { return base::data().dis_entry_assembly_end   (my_set_op); }
// apply a partition:
    template<class RepSize>
    void repartition (                              // old_numbering for *this
        const RepSize&        partition,            // old_ownership
        hack_array<T,distributed>& new_array,            // new_ownership (created)
        RepSize&              old_numbering,        // new_ownership
        RepSize&              new_numbering) const  // old_ownership
        { return base::data().repartition (partition.data(), new_array.data(), old_numbering.data(), new_numbering.data()); }
#ifdef TODO
    template<class RepSize>
    void permutation_apply (                       // old_numbering for *this
        const RepSize&          new_numbering,     // old_ownership
        hack_array<T,distributed,A>& new_array) const   // new_ownership (already allocated)
        { base::data().permutation_apply (new_numbering.data(), new_array.data()); }
    void reverse_permutation (                                 // old_ownership for *this=iold2dis_inew
        hack_array<size_type,distributed,A>& inew2dis_iold) const   // new_ownership
        { base::data().reverse_permutation (inew2dis_iold.data()); }
#endif // TODO
// i/o:
    odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
    idiststream& get_values (idiststream& ips)       { return base::data().get_values(ips); }
#ifdef TODO
    void dump (std::string name) const      { return base::data().dump(name); }
#endif // TODO
    template <class GetFunction>
    idiststream& get_values (idiststream& ips, GetFunction get_element)
             { return base::data().get_values(ips, get_element); }
    template <class PutFunction>
    odiststream& put_values (odiststream& ops, PutFunction put_element) const
             { return base::data().put_values(ops, put_element); }
    template <class PutFunction, class Permutation>
    odiststream& permuted_put_values (
        odiststream&                       ops,
        const Permutation&                 perm,
        PutFunction                        put_element) const
             { return base::data().permuted_put_values (ops, perm.data(), put_element); }
};