SYNOPSIS
 SUBROUTINE PDPOSV(
 UPLO, N, NRHS, A, IA, JA, DESCA, B, IB, JB, DESCB, INFO )
 CHARACTER UPLO
 INTEGER IA, IB, INFO, JA, JB, N, NRHS
 INTEGER DESCA( * ), DESCB( * )
 DOUBLE PRECISION A( * ), B( * )
PURPOSE
PDPOSV computes the solution to a real system of linear equations
where sub( A ) denotes A(IA:IA+N1,JA:JA+N1) and is an NbyN
symmetric distributed positive definite matrix and X and sub( B )
denoting B(IB:IB+N1,JB:JB+NRHS1) are NbyNRHS distributed
matrices.
The Cholesky decomposition is used to factor sub( A ) as
sub( A ) = U**T * U, if UPLO = 'U', or
sub( A ) = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of sub( A ) is then used to solve the
system of equations.
Notes
=====
Each global data object is described by an associated description
vector. This vector stores the information required to establish
the mapping between an object element and its corresponding process
and memory location.
Let A be a generic term for any 2D block cyclicly distributed array.
Such a global array has an associated description vector DESCA.
In the following comments, the character _ should be read as
"of the global array".
NOTATION STORED IN EXPLANATION
  
DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu
ted over. The context itself is glo
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed.
CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).
Let K be the number of rows or columns of a distributed matrix,
and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process
would receive if K were distributed over the p processes of its
process column.
Similarly, LOCc( K ) denotes the number of elements of K that a
process would receive if K were distributed over the q processes of
its process row.
The values of LOCr() and LOCc() may be determined via a call to the
ScaLAPACK tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
An upper bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
This routine requires square block decomposition ( MB_A = NB_A ).
ARGUMENTS
 UPLO (global input) CHARACTER

= 'U': Upper triangle of sub( A ) is stored;
= 'L': Lower triangle of sub( A ) is stored.  N (global input) INTEGER
 The number of rows and columns to be operated on, i.e. the order of the distributed submatrix sub( A ). N >= 0.
 NRHS (global input) INTEGER
 The number of right hand sides, i.e., the number of columns of the distributed submatrix sub( B ). NRHS >= 0.
 A (local input/local output) DOUBLE PRECISION pointer into the
 local memory to an array of dimension (LLD_A, LOCc(JA+N1)). On entry, this array contains the local pieces of the NbyN symmetric distributed matrix sub( A ) to be factored. If UPLO = 'U', the leading NbyN upper triangular part of sub( A ) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If UPLO = 'L', the leading NbyN lower triangular part of sub( A ) contains the lower triangular part of the distribu ted matrix, and its strictly upper triangular part is not referenced. On exit, if INFO = 0, this array contains the local pieces of the factor U or L from the Cholesky factori zation sub( A ) = U**T*U or L*L**T.
 IA (global input) INTEGER
 The row index in the global array A indicating the first row of sub( A ).
 JA (global input) INTEGER
 The column index in the global array A indicating the first column of sub( A ).
 DESCA (global and local input) INTEGER array of dimension DLEN_.
 The array descriptor for the distributed matrix A.
 B (local input/local output) DOUBLE PRECISION pointer into the
 local memory to an array of dimension (LLD_B,LOC(JB+NRHS1)). On entry, the local pieces of the right hand sides distribu ted matrix sub( B ). On exit, if INFO = 0, sub( B ) is over written with the solution distributed matrix X.
 IB (global input) INTEGER
 The row index in the global array B indicating the first row of sub( B ).
 JB (global input) INTEGER
 The column index in the global array B indicating the first column of sub( B ).
 DESCB (global and local input) INTEGER array of dimension DLEN_.
 The array descriptor for the distributed matrix B.
 INFO (global output) INTEGER

= 0: successful exit
< 0: If the ith argument is an array and the jentry had an illegal value, then INFO = (i*100+j), if the ith argument is a scalar and had an illegal value, then INFO = i. > 0: If INFO = K, the leading minor of order K,
A(IA:IA+K1,JA:JA+K1) is not positive definite, and the factorization could not be completed, and the solution has not been computed.