vw(1) fast online learning tool

DESCRIPTION

VW options:

--random_seed arg
seed random number generator
--ring_size arg
size of example ring

Update options:

-l [ --learning_rate ] arg
Set learning rate
--power_t arg
t power value
--decay_learning_rate arg
Set Decay factor for learning_rate between passes
--initial_t arg
initial t value
--feature_mask arg
Use existing regressor to determine which parameters may be updated. If no initial_regressor given, also used for initial weights.

Weight options:

-i [ --initial_regressor ] arg
Initial regressor(s)
--initial_weight arg
Set all weights to an initial value of arg.
--random_weights arg
make initial weights random
--input_feature_regularizer arg
Per feature regularization input file

Parallelization options:

--span_server arg
Location of server for setting up spanning tree
--threads
Enable multi-threading
--unique_id arg (=0)
unique id used for cluster parallel jobs
--total arg (=1)
total number of nodes used in cluster parallel job
--node arg (=0)
node number in cluster parallel job

Diagnostic options:

--version
Version information
-a [ --audit ]
print weights of features
-P [ --progress ] arg
Progress update frequency. int: additive, float: multiplicative
--quiet
Don't output disgnostics and progress updates
-h [ --help ]
Look here: http://hunch.net/~vw/ and click on Tutorial.

Feature options:

--hash arg
how to hash the features. Available options: strings, all
--ignore arg
ignore namespaces beginning with character <arg>
--keep arg
keep namespaces beginning with character <arg>
--redefine arg
redefine namespaces beginning with characters of string S as namespace N. <arg> shall be in form 'N:=S' where := is operator. Empty N or S are treated as default namespace. Use ':' as a wildcard in S.
-b [ --bit_precision ] arg
number of bits in the feature table
--noconstant
Don't add a constant feature
-C [ --constant ] arg
Set initial value of constant
--ngram arg
Generate N grams. To generate N grams for a single namespace 'foo', arg should be fN.
--skips arg
Generate skips in N grams. This in conjunction with the ngram tag can be used to generate generalized n-skip-k-gram. To generate n-skips for a single namespace 'foo', arg should be fN.
--feature_limit arg
limit to N features. To apply to a single namespace 'foo', arg should be fN
--affix arg
generate prefixes/suffixes of features; argument '+2a,-3b,+1' means generate 2-char prefixes for namespace a, 3-char suffixes for b and 1 char prefixes for default namespace
--spelling arg
compute spelling features for a give namespace (use '_' for default namespace)
--dictionary arg
read a dictionary for additional features (arg either 'x:file' or just 'file')
--dictionary_path arg
look in this directory for dictionaries; defaults to current directory or env{PATH}
--interactions arg
Create feature interactions of any level between namespaces.
--permutations
Use permutations instead of combinations for feature interactions of same namespace.
--leave_duplicate_interactions
Don't remove interactions with duplicate combinations of namespaces. For ex. this is a duplicate: '-q ab -q ba' and a lot more in '-q ::'.
-q [ --quadratic ] arg
Create and use quadratic features
--q: arg
: corresponds to a wildcard for all printable characters
--cubic arg
Create and use cubic features

Example options:

-t [ --testonly ]
Ignore label information and just test
--holdout_off
no holdout data in multiple passes
--holdout_period arg
holdout period for test only, default 10
--holdout_after arg
holdout after n training examples, default off (disables holdout_period)
--early_terminate arg
Specify the number of passes tolerated when holdout loss doesn't decrease before early termination, default is 3
--passes arg
Number of Training Passes
--initial_pass_length arg
initial number of examples per pass
--examples arg
number of examples to parse
--min_prediction arg
Smallest prediction to output
--max_prediction arg
Largest prediction to output
--sort_features
turn this on to disregard order in which features have been defined. This will lead to smaller cache sizes
--loss_function arg (=squared)
Specify the loss function to be used, uses squared by default. Currently available ones are squared, classic, hinge, logistic and quantile.
--quantile_tau arg (=0.5)
Parameter \tau associated with Quantile loss. Defaults to 0.5
--l1 arg
l_1 lambda
--l2 arg
l_2 lambda
--named_labels arg
use names for labels (multiclass, etc.) rather than integers, argument specified all possible labels, comma-sep, eg "--named_labels Noun,Verb,Adj,Punc"

Output model:

-f [ --final_regressor ] arg
Final regressor
--readable_model arg
Output human-readable final regressor with numeric features
--invert_hash arg
Output human-readable final regressor with feature names. Computationally expensive.
--save_resume
save extra state so learning can be resumed later with new data
--save_per_pass
Save the model after every pass over data
--output_feature_regularizer_binary arg
Per feature regularization output file
--output_feature_regularizer_text arg Per feature regularization output file,
in text

Output options:

-p [ --predictions ] arg
File to output predictions to
-r [ --raw_predictions ] arg
File to output unnormalized predictions to

Reduction options, use [option] --help for more info:

--bootstrap arg
k-way bootstrap by online importance resampling
--search arg
Use learning to search, argument=maximum action id or 0 for LDF
--replay_c arg
use experience replay at a specified level [b=classification/regression, m=multiclass, c=cost sensitive] with specified buffer size
--cbify arg
Convert multiclass on <k> classes into a contextual bandit problem
--cb_adf
Do Contextual Bandit learning with multiline action dependent features.
--cb arg
Use contextual bandit learning with <k> costs
--csoaa_ldf arg
Use one-against-all multiclass learning with label dependent features. Specify singleline or multiline.
--wap_ldf arg
Use weighted all-pairs multiclass learning with label dependent features.
Specify singleline or multiline.
--interact arg
Put weights on feature products from namespaces <n1> and <n2>
--csoaa arg
One-against-all multiclass with <k> costs
--multilabel_oaa arg
One-against-all multilabel with <k> labels
--log_multi arg
Use online tree for multiclass
--ect arg
Error correcting tournament with <k> labels
--boosting arg
Online boosting with <N> weak learners
--oaa arg
One-against-all multiclass with <k> labels
--top arg
top k recommendation
--replay_m arg
use experience replay at a specified level [b=classification/regression, m=multiclass, c=cost sensitive] with specified buffer size
--binary
report loss as binary classification on -1,1
--link arg (=identity)
Specify the link function: identity, logistic or glf1
--stage_poly
use stagewise polynomial feature learning
--lrqfa arg
use low rank quadratic features with field aware weights
--lrq arg
use low rank quadratic features
--autolink arg
create link function with polynomial d
--new_mf arg
rank for reduction-based matrix factorization
--nn arg
Sigmoidal feedforward network with <k> hidden units
--confidence
Get confidence for binary predictions
--active_cover
enable active learning with cover
--active
enable active learning
--replay_b arg
use experience replay at a specified level [b=classification/regression, m=multiclass, c=cost sensitive] with specified buffer size
--bfgs
use bfgs optimization
--conjugate_gradient
use conjugate gradient based optimization
--lda arg
Run lda with <int> topics
--noop
do no learning
--print
print examples
--rank arg
rank for matrix factorization.
--sendto arg
send examples to <host>
--svrg
Streaming Stochastic Variance Reduced Gradient
--ftrl
FTRL: Follow the Proximal Regularized Leader
--pistol
FTRL: Parameter-free Stochastic Learning
--ksvm
kernel svm

Gradient Descent options:

--sgd
use regular stochastic gradient descent update.
--adaptive
use adaptive, individual learning rates.
--invariant
use safe/importance aware updates.
--normalized
use per feature normalized updates
--sparse_l2 arg (=0)
use per feature normalized updates

Input options:

-d [ --data ] arg
Example Set
--daemon
persistent daemon mode on port 26542
--port arg
port to listen on; use 0 to pick unused port
--num_children arg
number of children for persistent daemon mode
--pid_file arg
Write pid file in persistent daemon mode
--port_file arg
Write port used in persistent daemon mode
-c [ --cache ]
Use a cache. The default is <data>.cache
--cache_file arg
The location(s) of cache_file.
-k [ --kill_cache ]
do not reuse existing cache: create a new one always
--compressed
use gzip format whenever possible. If a cache file is being created, this option creates a compressed cache file. A mixture of raw-text & compressed inputs are supported with autodetection.
--no_stdin
do not default to reading from stdin