ZROT(3) applies a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors CX and CY are complex

SYNOPSIS

SUBROUTINE ZROT(
N, CX, INCX, CY, INCY, C, S )

    
INTEGER INCX, INCY, N

    
DOUBLE PRECISION C

    
COMPLEX*16 S

    
COMPLEX*16 CX( * ), CY( * )

PURPOSE

ZROT applies a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors CX and CY are complex.

ARGUMENTS

N (input) INTEGER
The number of elements in the vectors CX and CY.
CX (input/output) COMPLEX*16 array, dimension (N)
On input, the vector X. On output, CX is overwritten with C*X + S*Y.
INCX (input) INTEGER
The increment between successive values of CY. INCX <> 0.
CY (input/output) COMPLEX*16 array, dimension (N)
On input, the vector Y. On output, CY is overwritten with -CONJG(S)*X + C*Y.
INCY (input) INTEGER
The increment between successive values of CY. INCX <> 0.
C (input) DOUBLE PRECISION
S (input) COMPLEX*16 C and S define a rotation [ C S ] [ -conjg(S) C ] where C*C + S*CONJG(S) = 1.0.