KFAIL_POINT_RETURN(9) fail points

Other Alias

KFAIL_POINT_CODE, KFAIL_POINT_RETURN_VOID, KFAIL_POINT_ERROR, KFAIL_POINT_GOTO, fail_point, DEBUG_FP

SYNOPSIS

In sys/fail.h Fn KFAIL_POINT_CODE parent name code Fn KFAIL_POINT_RETURN parent name Fn KFAIL_POINT_RETURN_VOID parent name Fn KFAIL_POINT_ERROR parent name error_var Fn KFAIL_POINT_GOTO parent name error_var label

DESCRIPTION

Fail points are used to add code points where errors may be injected in a user controlled fashion. Fail points provide a convenient wrapper around user-provided error injection code, providing a sysctl(9) MIB, and a parser for that MIB that describes how the error injection code should fire.

The base fail point macro is Fn KFAIL_POINT_CODE where Fa parent is a sysctl tree (frequently DEBUG_FP for kernel fail points, but various subsystems may wish to provide their own fail point trees), and Fa name is the name of the MIB in that tree, and Fa code is the error injection code. The Fa code argument does not require braces, but it is considered good style to use braces for any multi-line code arguments. Inside the Fa code argument, the evaluation of RETURN_VALUE is derived from the Fn return value set in the sysctl MIB. See Sx SYSCTL VARIABLES below.

The remaining Fn KFAIL_POINT_* macros are wrappers around common error injection paths:

Fn KFAIL_POINT_RETURN parent name
is the equivalent of KFAIL_POINT_CODE(..., return RETURN_VALUE)
Fn KFAIL_POINT_RETURN_VOID parent name
is the equivalent of KFAIL_POINT_CODE(..., return)
Fn KFAIL_POINT_ERROR parent name error_var
is the equivalent of KFAIL_POINT_CODE(..., error_var = RETURN_VALUE)
Fn KFAIL_POINT_GOTO parent name error_var label
is the equivalent of KFAIL_POINT_CODE(..., { error_var = RETURN_VALUE; goto label;})

SYSCTL VARIABLES

The Fn KFAIL_POINT_* macros add sysctl MIBs where specified. Many base kernel MIBs can be found in the debug.fail_point tree (referenced in code by DEBUG_FP )

The sysctl variable may be set using the following grammar:

  <fail_point> ::
      <term> ( "->" <term> )*
  <term> ::
      ( (<float> "%") | (<integer> "*" ) )*
      <type>
      [ "(" <integer> ")" ]
      [ "[pid " <integer> "]" ]
  <float> ::
      <integer> [ "." <integer> ] |
      "." <integer>
  <type> ::
      "off" | "return" | "sleep" | "panic" | "break" | "print"

The <type> argument specifies which action to take:

off
Take no action (does not trigger fail point code)
return
Trigger fail point code with specified argument
sleep
Sleep the specified number of milliseconds
panic
Panic
break
Break into the debugger, or trap if there is no debugger support
print
Print that the fail point executed

The <float>% and <integer>* modifiers prior to <type> control when <type> is executed. The <float>% form (e.g. "1.2%") can be used to specify a probability that <type> will execute. The <integer>* form (e.g. "5*") can be used to specify the number of times <type> should be executed before this <term> is disabled. Only the last probability and the last count are used if multiple are specified, i.e. "1.2%2%" is the same as "2%". When both a probability and a count are specified, the probability is evaluated before the count, i.e. "2%5*" means "2% of the time, but only 5 times total".

The operator -> can be used to express cascading terms. If you specify <term1>-><term2>, it means that if <term1> does not `execute' , <term2> is evaluated. For the purpose of this operator, the return() and print() operators are the only types that cascade. A return() term only cascades if the code executes, and a print() term only cascades when passed a non-zero argument. A pid can optionally be specified. The fail point term is only executed when invoked by a process with a matching p_pid.

EXAMPLES

sysctl debug.fail_point.foobar=2.1%return(5)
21/1000ths of the time, execute Fa code with RETURN_VALUE set to 5.
sysctl debug.fail_point.foobar=2%return(5)->5%return(22)
2/100ths of the time, execute Fa code with RETURN_VALUE set to 5. If that does not happen, 5% of the time execute Fa code with RETURN_VALUE set to 22.
sysctl debug.fail_point.foobar=5*return(5)->0.1%return(22)
For 5 times, return 5. After that, 1/1000th of the time, return 22.
sysctl debug.fail_point.foobar=0.1%5*return(5)
Return 5 for 1 in 1000 executions, but only 5 times total.
sysctl debug.fail_point.foobar=1%*sleep(50)
1/100th of the time, sleep 50ms.
sysctl debug.fail_point.foobar=1*return(5)[pid 1234]
Return 5 once, when pid 1234 executes the fail point.

AUTHORS

An -nosplit This manual page was written by An Zach Loafman Aq [email protected] .

CAVEATS

It is easy to shoot yourself in the foot by setting fail points too aggressively or setting too many in combination. For example, forcing Fn malloc to fail consistently is potentially harmful to uptime.

The Fn sleep sysctl setting may not be appropriate in all situations. Currently, Fn fail_point_eval does not verify whether the context is appropriate for calling Fn msleep .