SYNTAX
C Syntax
#include <mpi.h> int MPI_Wait(MPI_Request *request, MPI_Status *status)
Fortran Syntax
INCLUDE 'mpif.h' MPI_WAIT(REQUEST, STATUS, IERROR) INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
C++ Syntax
#include <mpi.h> void Request::Wait(Status& status) void Request::Wait()
INPUT PARAMETER
- request
-
Request (handle).
OUTPUT PARAMETERS
- status
- Status object (status).
- IERROR
-
Fortran only: Error status (integer).
DESCRIPTION
A call to MPI_Wait returns when the operation identified by request is complete. If the communication object associated with this request was created by a nonblocking send or receive call, then the object is deallocated by the call to MPI_Wait and the request handle is set to MPI_REQUEST_NULL.The call returns, in status, information on the completed operation. The content of the status object for a receive operation can be accessed as described in Section 3.2.5 of the MPI-1 Standard, "Return Status." The status object for a send operation may be queried by a call to MPI_Test_cancelled (see Section 3.8 of the MPI-1 Standard, "Probe and Cancel").
If your application does not need to examine the status field, you can save resources by using the predefined constant MPI_STATUS_IGNORE as a special value for the status argument.
One is allowed to call MPI_Wait with a null or inactive request argument. In this case the operation returns immediately with empty status.
NOTES
Successful return of MPI_Wait after an MPI_Ibsend implies that the user send buffer can be reused i.e., data has been sent out or copied into a buffer attached with MPI_Buffer_attach. Note that, at this point, we can no longer cancel the send (for more information, see Section 3.8 of the MPI-1 Standard, "Probe and Cancel"). If a matching receive is never posted, then the buffer cannot be freed. This runs somewhat counter to the stated goal of MPI_Cancel (always being able to free program space that was committed to the communication subsystem).Example: Simple usage of nonblocking operations and MPI_Wait.
CALL MPI_COMM_RANK(comm, rank, ierr) IF(rank.EQ.0) THEN CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr) **** do some computation **** CALL MPI_WAIT(request, status, ierr) ELSE CALL MPI_IRECV(a(1), 15, MPI_REAL, 0, tag, comm, request, ierr) **** do some computation **** CALL MPI_WAIT(request, status, ierr) END IF
ERRORS
Almost all MPI routines return an error value; C routines as the value of the function and Fortran routines in the last argument. C++ functions do not return errors. If the default error handler is set to MPI::ERRORS_THROW_EXCEPTIONS, then on error the C++ exception mechanism will be used to throw an MPI::Exception object.Before the error value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job, except for I/O function errors. The error handler may be changed with MPI_Comm_set_errhandler, MPI_File_set_errhandler, or MPI_Win_set_errhandler (depending on the type of MPI handle that generated the request); the predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned. Note that MPI does not guarantee that an MPI program can continue past an error.
Note that per MPI-1 section 3.2.5, MPI exceptions on requests passed to MPI_WAIT do not set the status.MPI_ERROR field in the returned status. The error code is passed to the back-end error handler and may be passed back to the caller through the return value of MPI_WAIT if the back-end error handler returns it. The pre-defined MPI error handler MPI_ERRORS_RETURN exhibits this behavior, for example.