PSLANTR(1) return the value of the one norm, or the Frobenius norm,

SYNOPSIS

REAL FUNCTION
PSLANTR( NORM, UPLO, DIAG, M, N, A, IA, JA, DESCA, WORK )

    
CHARACTER DIAG, NORM, UPLO

    
INTEGER IA, JA, M, N

    
INTEGER DESCA( * )

    
REAL A( * ), WORK( * )

PURPOSE

PSLANTR returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular distributed matrix sub( A ) denoting A(IA:IA+M-1, JA:JA+N-1).

PSLANTR returns the value


   ( max(abs(A(i,j))),  NORM = 'M' or 'm' with ia <= i <= ia+m-1,
   (                                      and  ja <= j <= ja+n-1,
   (

   ( norm1( sub( A ) ), NORM = '1', 'O' or 'o'

   (

   ( normI( sub( A ) ), NORM = 'I' or 'i'

   (

   ( normF( sub( A ) ), NORM = 'F', 'f', 'E' or 'e'

where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

Notes
=====

Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.

Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".

NOTATION STORED IN EXPLANATION
--------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
                               DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                               the BLACS process grid A is distribu-
                               ted over. The context itself is glo-
                               bal, but the handle (the integer
                               value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
                               array A.
N_A (global) DESCA( N_ ) The number of columns in the global
                               array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
                               the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
                               the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                               row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
                               first column of the array A is
                               distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
                               array.  LLD_A >= MAX(1,LOCr(M_A)).

Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:

        LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
        LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:

        LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A

        LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS

NORM (global input) CHARACTER
Specifies the value to be returned in PSLANTR as described above.
UPLO (global input) CHARACTER
Specifies whether the matrix sub( A ) is upper or lower trapezoidal. = 'U': Upper trapezoidal
= 'L': Lower trapezoidal Note that sub( A ) is triangular instead of trapezoidal if M = N.
DIAG (global input) CHARACTER
Specifies whether or not the distributed matrix sub( A ) has unit diagonal. = 'N': Non-unit diagonal
= 'U': Unit diagonal
M (global input) INTEGER
The number of rows to be operated on i.e the number of rows of the distributed submatrix sub( A ). When M = 0, PSLANTR is set to zero. M >= 0.
N (global input) INTEGER
The number of columns to be operated on i.e the number of columns of the distributed submatrix sub( A ). When N = 0, PSLANTR is set to zero. N >= 0.
A (local input) REAL pointer into the local memory
to an array of dimension (LLD_A, LOCc(JA+N-1) ) containing the local pieces of sub( A ).
IA (global input) INTEGER
The row index in the global array A indicating the first row of sub( A ).
JA (global input) INTEGER
The column index in the global array A indicating the first column of sub( A ).
DESCA (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix A.
WORK (local workspace) REAL array dimension (LWORK)
LWORK >= 0 if NORM = 'M' or 'm' (not referenced), Nq0 if NORM = '1', 'O' or 'o', Mp0 if NORM = 'I' or 'i', 0 if NORM = 'F', 'f', 'E' or 'e' (not referenced), where

IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ), IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ), IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ), Mp0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ), Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),

INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO.